Универсальный алгоритм поиска неисправностей. Полезные советы по поиску неисправностей при ремонте электрооборудования Гост блок схема отыскания неисправности

При отыскании неисправности в аппаратуре пользуются различными методами и способами. Различают следующие методы отыскания неисправностей:

1. Последовательных поэлементных проверок.

2. Групповых проверок.

3. Комбинационный.

Метод последовательных поэлементных проверок заключается в проверке элементов системы по одному в определенной последовательности, заранее заданной.

В результате испытания каждого элемента устанавливается его состояние. Если проверенный элемент исправен, то проверяется следующий по порядку. (Можно проверять последовательно по тракту прохождения сигнала, либо в другом заранее установленном порядке). Выявленный неисправный элемент восстанавливается, затем проводится комплексная проверка аппаратуры.

Метод групповых проверок заключается в том, что путем измерения одного или нескольких параметров определяется группа элементов, в которой имеются неисправности. Затем проводится другая серия измерений, позволяющая выделить подгруппу элементов, включающую неисправный.

В результате последовательной серии проверок постепенно сужается область неисправной части до тех пор, пока не будет установлен конкретный неисправный элемент.

Комбинационный метод состоит в том, что в процессе поиска неисправностей проводится измерение определенного набора параметров. По результатам этих измерений определяется неисправный элемент. Анализ состояния системы производится после проведения полной группы проверок.

При применении любого метода поиска неисправностей может использоваться несколько способов проверок состояния аппаратуры (элементов, узлов, аппаратуры):

Способ внешнего осмотра заключается в осмотре блоков (узлов), в которых предполагается отказ. Основное внимание при этом обращается на состояние электрического монтажа (повреждения изоляции, обрывы, замыкания, следы пробоя и т. д.), на внешний вид резисторов, конденсаторов, трансформаторов, на контактные системы переключателей, реле и т. д.

Способ замены заключается в том, что отдельные элементы системы (блоки, съемные детали), предполагаемые неисправными, заменяются заведомо работоспособными. Если после замены нормальная работа восстанавливается, то делается вывод о неисправности замененного элемента.

Способ сравнения применяется в тех случаях, когда в технической документации отсутствуют карты напряжений, сопротивлений и т. д. Тогда режим проверяемых элементов при поиске неисправностей сравнивается с режимом исправного однотипного устройства.



Способ контрольных переключений и проверок заключается в использовании органов управления, измерительных и индикаторных приборов для определения неисправного тракта или блока путем последовательного переключения аппаратуры в различные режимы работы.

Способ промежуточных измерений применяется для проверки узлов, блоков, элементов аппаратуры, которые невозможно проверить другими способами.

Для проверки состояния в контрольных точках аппаратуры проводится измерение напряжений, частот и других параметров сигналов. Результаты измерений сравнивают с данными технической документации.

Отремонтированные изделия подвергаются испытаниям на соответствие измерения основных технических характеристик и доведения их (путем регулировок) до норм, установленных ТУ.

Последовательность операций при отыскании неисправностей

Прежде чем приступить к ремонту, надо хорошо изучить принципиальную схему аппаратуры, органы управления на ее передней панели и методику проверки работоспособности. Необходимо также изучить приборы, применяемые при ремонте.

Все неисправности аппаратуры можно условно разделить на три группы:

1. Аппаратура вообще не работает. В таких случаях реальная вероятность неисправности заложена или в источниках питания или в общих узлах аппаратуры. Не исключена возможность, что аппаратура не работает по какой-то одной и, может быть, простой причине: перегорел предохранитель, обрыв или короткое замыкание цепи, замкнулся электролитический конденсатор фильтра питания и т. д. Эта “простая” причина при длительно включенной аппаратуре может привести к выходу из строя других деталей и вызвать более сложные неисправности. Неисправность такого рода проста в том отношении, что если ее обнаружить и устранить, то аппаратура начнет нормально работать и не потребует дополнительных регулировок. Не всегда аппаратура не работает из-за выхода из строя единичных деталей. Бывают случаи, когда замена неисправной детали не возвращает ее к нормальной работе и требуются более сложные регулировки.



2. Аппаратура работает не полностью. Например, работает только тракт передачи или тракт приема. Неисправность также может быть сопряжена, как и в первом случае, с выходом из строя единичных деталей и узлов неисправного тракта.

3. Аппаратура работает, но нормам ТУ не соответствует. Например, искажения сигнала, завышение или занижение уровней. В таких случаях следует предположить, что изменился режим транзисторов, изменились параметры радиодеталей и т. д.

Следовательно, надо серьезно исследовать состояние аппаратуры. Это исследование может заключаться в замере режимов питания транзисторов, снятии диаграммы уровней и т. д.

Появление неисправностей в аппаратуре возможно при ее включении или в процессе работы. В основу проведения ремонта в лабораторных условиях положен первый вариант, когда по каким-либо причинам (длительное хранение, транспортировка, некачественное проведение профилактических работ и т. п.) возможно появление нескольких неисправностей. Аппаратура, находящаяся на каждом рабочем месте, имеет искусственно введенные неисправности. Причины неисправностей, как правило, способом внешнего осмотра не определяются. Однако, в общем случае поиск неисправностей следует вести в следующей последовательности:

1. Произвести внешний осмотр, для того чтобы собрать первую информацию о признаках неисправностей и избежать потерь времени на поиск ложных неисправностей. При внешнем осмотре необходимо:

убедиться в правильности подачи питающего напряжения и установки переключателей питания, надежности подсоединения соединительных кабелей, плотности вставления блоков в упаковки;

проверить правильность установки переключателей, коммутационных колодок, целостность предохранителей.

Если уже при включении аппаратуры проявились признаки неисправностей, то, прежде всего, следует проанализировать показания приборов сигнализации и контроля. Полученной при этом информации, как правило, достаточно, чтобы определить, где искать неисправность. Устройства звуковой и оптической сигнализации аппаратуры срабатывают при следующих видах неисправностей:

пропадании напряжения на выходах блоков питания и перегорании предохранителей;

неисправности системы дистанционного питания;

пропадании токов линейных контрольных частот и нарушении нормальной работы АРУ;

пропадании токов несущих и контрольных колебаний на выходе генераторного оборудования.

Внешний осмотр является обязательным и в том случае, когда неисправность определена уже до блока, узла. В этом случае внешним осмотром определяются перегоревшие детали, неисправность монтажа, контактов реле и переключателей, целостность паек, отсутствие касаний, надежность крепления, работа мотора МРУ и т. д.

Способ отыскания неисправностей внешним осмотром наиболее эффективен при неисправностях, носящих аварийный характер (появление дыма, резкого запаха, искрение контактов).

2. Проверкой работоспособности аппаратуры установить неисправные участки трактов или неисправность отдельных упаковок либо блоков.

3. Измерением диаграммы уровней в контрольных гнездах определить неисправный блок, если он не был определен при проверке работоспособности. На этом этапе иногда целесообразно использовать способ замены, например, замену блока на заведомо исправный из упаковки ЗИП.

4. Подключив к аппаратуре неисправный блок с помощью ремонтных шлангов и измеряя уровни в различных точках, определить неисправный узел. При этом не всегда следует стремиться к большой точности измерения. Достаточно лишь убедиться в наличии или отсутствии сигнала. При снятии диаграммы уровней первую точку измерений следует выбирать с таким расчетом, чтобы можно было убедиться в том, что измерительный сигнал на вход проверяемого участка подается правильно. Точку каждого последующего измерения нужно выбирать так, чтобы проверяемый участок делился бы в ней на две равнонадежные части, и чтобы обеспечивалась доступность подключения измерительных приборов к выходу узла. При таком методе затрачивается меньше времени на проверку.

5. Отыскание повреждения в узле следует начинать с внешнего осмотра, затем проверить напряжения питания в режиме работы, при необходимости – проверить и исправность отдельных элементов. При отсутствии необходимых данных о режимах работы узла (в эксплуатационной документации не для всех узлов указаны напряжения на электродах транзисторов) целесообразно использовать способ сравнения с параметрами заведомо исправного узла либо способ замены.

6. Отказавшую деталь заменить исправной. После этого произвести контрольные измерения в узле, подвергшемся ремонту, а затем в блоке. В некоторых случаях (например, при ремонте усилителей, ПКК) производится настройка и доводка ремонтируемого узла до полного соответствия с данными эксплуатационной документации.

Тема 1.18. Монтажные работы с кабелем. Подготовка кабеля к монтажу. Вязка жгута.

Подготовка кабеля в пластмассовой оболочке и с полиэтиленовой изоляцией жил в основном ничем не отличается от подготовки кабелей в свинцовой оболочке. Все виды проверок (на герметичность оболочки, обрыв и сообщение жил с экраном, обрыв экрана, сопротивление изоляции жил) выполняют так же, как и для кабелей в свинцовой оболочке, но учитывают, что в качестве земли используют голую медную жилу. Убедившись в исправности оболочек и жил, кабель временно укрепляют на консолях проволочными бандажами и приступают к разделке.

Подготовку кабеля к прокладке начинают с того, что развозят барабаны с кабелем по трассе на автомашинах или специальных тележках. Если трасса проходит в непосредственной близости от железнодорожного полотна, кабель развозят на железнодорожных платформах, с которых его сразу укладывают в траншею. Перед укладкой кабеля в грунт проверяют герметичность его оболочки, сопротивление изоляции жил и отсутствие в них замыканий и обрывов.

Для подготовки монтажа сперва необходимо закрепить оба конца кабеля, либо по форме колодца, если сращивание производится в колодце, либо в произвольной форме. Затем на оба конца кабеля необходимо установить термоусаживаемые трубки, при этом диаметр данной трубки должен быть немного больше диаметра кабеля. Сверху термоусаживаемых трубок надеваются части полиэтиленовой муфты.

Далее необходимо на обоих концах кабеля закрепить специальные зажимы, предназначенные для организации экранной шины кабеля. После закрепления зажимов очищают полиэтиленовую оболочку и алюминиевую ленту. Длина зачистки должна равняться 15 мм с обоих краев. Данная длина выбрана для того, чтобы в результате получилась ровная муфта. Установить зажимы на алюминиевую ленту и с помощью отвертки закрепить их на конце кабеля. Далее необходимо соединить оба зажима временным проводом для обеспечения экранной шины. Теперь нужно разбить пары кабеля на повивы и прозвонить их. Прозвонка необходима для выявления неисправностей в жилах. Разбитие на повивы помогает в будущем быстро и самое главное правильно скрутить оба участка кабеля.

Для проверки кабеля на «обрыв» и "сообщение" с его концов удаляют участки оболочки длиной от 150 до 400 мм, поясную изоляцию обрезают и удаляют с сердечника.

Нити и ленты, скрепляющие пучки и повивы, обрезать не рекомендуется. На одном из концов кабеля со всех жил удаляют изоляцию на участках длиной от 20 до 25 мм, затем жилы собирают в пучки по 10-50 пар. Все жилы каждого пучка закорачивают, плотно обматывая их зачищенные участки голой медной жилой. Все пучки соединяют между собой одним отрезком медной зачищенной жилы. Связку пучков соединяют с экраном или металлической оболочкой кабеля.

Проверку на «обрыв» выполняют на противоположном конце кабеля. Провода микротелефонной трубки (или гарнитуры) последовательно соединяют с батареей и экраном (или металлической оболочкой) кабеля. Свободным проводом от трубки поочередно касаются каждой жилы кабеля (рисунок 11.6). Если в трубке при касании слышен щелчок, то проверяемая жила исправна. При касании оборванной жилы щелчка не будет.

Проверяемые жилы не зачищаются. Контакт достигается благодаря тому, что при обрезании кабеля ножовкой или секторными ножницами кончики жил выступают за край изоляции.

Для удобства действий свободный провод от трубки соединяют с кусачками-бокорезами и ими касаются концов жил. При необходимости изоляцию проверяемой жилы зачищают или прокусывают.

Название: Поиск неисправностей в электрических схемах
Бенда Дитмар
Год: 2010 (во быстрые...)
Страниц: 250
Формат: DjVu
Размер: 7.18 Mб
Язык: русский (перевод с немецкого)
В книге обобщен многолетний опыт практической работы и приведены проверенные методики поиска неисправностей для различных электронных устройств. На большом количестве примеров аналоговых и цифровых блоков, программируемых контроллеров и компьютерной техники показан системный подход и специфика поиска неисправностей в электрических схемах. Рассмотрены основные правила проведения технического обслуживания, фазы поиска неисправностей, диагностика устройств, тестирование электронных компонентов.

Оглавление
Предисловие
Глава 1 . Основные правила успешного технического обслуживания
1.1. Системный подход, логика и опыт гарантируют успех
1.2. Общение с клиентом
Глава 2. Получение информации об устройствах и системах
2.1. Системный сбор информации о знакомом и неизвестном
2.2. Собирайте информацию целенаправленно
2.3. Устанавливайте характерные черты структуры
Глава 3. Систематизированный поиск неисправностей в автоматизированных устройствах
3.1. Предпосылки и последовательность успешного поиска неисправностей
3.2. Оценка фактического состояния устройства
3.3. Локализация области неисправности
3.4. Мероприятия по ремонту и вводу в эксплуатацию
Глава 4. Определение полярности и напряжения в электронных блоках и схемах
4.1. Измерение напряжения
4.2. Неисправности в электрической цепи
4.3. Точка, взятая в качестве опорного потенциала, определяет полярность и значение напряжений
4.4. Примеры определения полярности и напряжений
4.5. Упражнения для закрепления полученных знаний
Глава 5 . Системный поиск неисправностей в аналоговых схемах
5.1. Определение напряжений в схемах
5.2. Последствия возможных коротких замыканий и обрывов при различных видах связи
Соединительные связи
Отрицательные обратные связи
Положительные обратные связи
5.3. Систематизированный поиск неисправностей в аналоговых схемах
5.4. Поиск неисправностей в схемах управления и регулировки
Электропривод трехфазного тока
Стабилизатор напряжения
5.5. Поиск неисправностей в колебательных схемах
LC-генератор синусоидальных колебаний
Мостовой RC-генератор
Функциональный преобразователь
5.6. Поиск неисправностей в операционных усилителях
Поиск неисправностей в предусилителях
Оконечный усилитель
5.7. Упражнения для закрепления полученных знаний
Глава 6. Системный поиск неисправностей в импульсных и цифровых схемах
6.1. Напряжения в цифровых схемах
6.2. Воздействия возможных коротких замыканий и внутренних обрывов
6.3. Систематизированный поиск ошибок в цифровой схеме
6.4. Ошибки в цифровых интегральных схемах
6.5. Упражнения для закрепления полученных знаний
Глава 7. Поиск неисправностей в системе с компьютерными схемами
7.1. Диагностика неисправностей в схемах с тремя состояниями
7.2. Проверка статических функциональных параметров
7.3. Проверка динамических функциональных параметров
7.4. Систематизированный поиск неисправностей в компьютерной схеме
7.5. Поиск неисправностей в схемах интерфейсов
7.6. Упражнения для закрепления полученных знаний
Глава 8. Поиск неисправностей в системах на программируемых контроллерах
8.1. Проверка статических и динамических функциональных параметров
8.2. Техническое обслуживание путем диагностики с помощью устройства визуального отображения
8.3. Систематизированный поиск неисправностей в схеме программируемого контроллера
8.4. Упражнения для закрепления полученных знаний
Глава 9 . Поиск неисправностей в системе с сетевым напряжением питания
9.1. Сетевые помехи и их воздействия
9.2. Поиск неисправностей в схемах выпрямителей
9.3. Поиск неисправностей в источниках питания
9.4. Упражнения для закрепления полученных знаний
Глава 10. Поиск ошибок в системах тестирования при обслуживании и производстве
10.1. Внутрисхемное тестирование
10.2. Поиск неисправностей с помощью контактной системы тестирования
10.3. Подготовка электронных блоков к тестированию
10.4. Локализация коротких замыканий
10.5. Упражнения для закрепления полученных знаний
Приложение. Ответы к упражнениям
Предметный указатель

Электроника сопровождает современного человека повсеместно: на работе, дома, в автомобиле. Работая на производстве, и неважно, в какой конкретно сфере, часто приходится ремонтировать что-то электронное. Условимся это «что-то» называть «прибор». Это такой абстрактный собирательный образ. Сегодня поговорим о всевозможных премудростях ремонта, освоив которые, вы сможете починить практически любой электронный «прибор», вне зависимости от его конструкции, принципа работы и области применения.

С чего начать

Невелика премудрость перепаять детальку, а вот найти дефектный элемент и есть главная задача в ремонте. Начинать следует с определения типа неисправности, так как от этого зависит, с чего начинать ремонт.

Типов таких три:
1. прибор не работает вообще - не светятся индикаторы, ничто не движется, ничто не гудит, нет никаких откликов на управление;
2. не работает какая-либо часть прибора, то есть не выполняется часть его функций, но хотя проблески жизни в нём всё же видны;
3. прибор в основном работает исправно, но иногда делает так называемые сбои. Назвать такой прибор сломанным пока нельзя, но всё же что-то ему мешает работать нормально. Ремонт в этом случае как раз и заключается в поиске этой помехи. Считается, что это самый сложный ремонт.
Разберём примеры ремонта каждого из трёх типов неисправностей.

Ремонт первой категории
Начнём с самой простой - поломка первого типа, это когда прибор совсем мёртвый. Любой догадается, что начинать нужно с питания. Все приборы, живущие в своём мире машин, обязательно потребляют энергию в том или ином виде. И если прибор наш совсем не шевелится, то вероятность отсутствия этой самой энергии весьма высока. Небольшое отступление. При поиске неисправности в нашем приборе речь часто будет идти именно о «вероятности». Ремонт всегда начинается с процесса определения возможных точек влияния на неисправность прибора и оценки величины вероятности причастности каждой такой точки к данному конкретному дефекту, с последующим превращением этой вероятности в факт. При этом сделать правильную, то есть с самой высокой степенью вероятности оценку влияния какого-либо блока или узла на проблемы прибора поможет самое полное знание устройства прибора, алгоритма его работы, физических законов, на которых основана работа прибора, умение логически мыслить и, конечно же, его величество опыт. Одним из самых эффективных методов ведения ремонта является так называемый метод исключения. Из всего списка всех подозреваемых в причастности к дефекту прибора блоков и узлов, с той или иной степенью вероятности, необходимо последовательно исключать невиновных.

Начинать поиск надо соответственно с тех блоков, вероятность которых может быть виновниками этой неисправности самая высокая. Отсюда и выходит, что чем точнее определена эта самая степень вероятности, тем меньше времени будет затрачено на ремонт. В современных «приборах» внутренние узлы сильно интегрированы между собой, и связей очень много. Поэтому количество точек влияния зачастую бывает чрезвычайно велико. Но и ваш опыт растёт, и со временем вы будете выявлять «вредителя» максимум с двух-трёх попыток.

Например, есть предположение, что с высокой вероятностью виноват в болезни прибора блок «X». Тогда нужно провести ряд проверок, замеров, экспериментов, которые бы подтвердили либо опровергли это предположение. Если после таких экспериментов останутся хоть самые малые сомнения в непричастности блока к «преступному» влиянию на прибор, то исключать полностью этот блок из числа подозреваемых нельзя. Нужно искать такой способ проверки алиби подозреваемого, чтобы на все 100% быть уверенным в его невиновности. Это очень важно в методе исключения. А самый надёжный способ такой проверки подозреваемого - это замена блока на заведомо исправный.

Вернёмся всё же к нашему «больному», у которого мы предположили неисправность питания. С чего начать в этом случае? А как и во всех других случаях - с полного внешнего и внутреннего осмотра «больного». Никогда не пренебрегайте этой процедурой, даже когда уверены в том, что знаете точное местоположение поломки. Осматривайте прибор всегда полностью и очень внимательно, не торопясь. Нередко во время осмотра можно найти дефекты, не влияющие напрямую на искомую неисправность, но которые могут вызвать поломку в будущем. Ищите подгоревшие электроэлементы, вздувшиеся конденсаторы и прочие подозрительно выглядящие элементы.

Если внешний и внутренний осмотр не принёс никаких результатов, тогда берите в руки мультиметр и приступайте к работе. Надеюсь, про проверку наличия напряжения сети и про предохранители напоминать не надо. А вот о блоках питания немного поговорим. В первую очередь, проверяйте высокоэнергетические элементы блока питания (БП): выходные транзисторы, тиристоры, диоды, силовые микросхемы. Потом можно начать грешить на оставшиеся полупроводники, электролитические конденсаторы и, в последнюю очередь, на остальные пассивные электроэлементы. Вообще величина вероятности выхода из строя элемента зависит от его энергетической насыщенности. Чем большую энергию использует электроэлемент для своего функционирования, тем больше вероятность его поломки.

Если механические узлы изнашивает трение, то электрические - ток. Чем больше ток, тем больше нагрев элемента, а нагревание/остывание изнашивает любые материалы не хуже трения. Колебания температуры приводят к деформации материала электроэлементов на микроуровне из-за температурного расширения. Такие переменные температурные нагрузки и являются основной причиной так называемого эффекта усталости материала при эксплуатации электроэлементов. Это необходимо учитывать при определении очерёдности проверки элементов.

Не забывайте проверять БП па предмет пульсаций выходных напряжений, либо каких-то иных помех на шинах питания. Хоть и нечасто, но и такие дефекты бывают причиной неработоспособности прибора. Проверьте, доходит ли реально питание до всех потребителей. Может, из-за проблем в разъёме/кабеле/проводе эта «пища» не доходит до них? БП будет исправен, а энергии-то в блоках прибора всё одно нет.

Ещё бывает, что неисправность таится в самой нагрузке - короткое замыкание (КЗ) там штука нередкая. При этом в некоторых «экономных» БП нет защиты по току и, соответственно, нет такой индикации. Поэтому версию короткого замыкания в нагрузке тоже следует проверить.

Теперь поломка второго типа. Хотя здесь также всё следует начинать всё с того же внешне-внутреннего осмотра, тут таится гораздо большее разнообразие аспектов, па которые следует обратить внимание. - Самое главное - успеть запомнить (записать) всю картину состояния звуковой, световой, цифровой индикации прибора, кодов ошибок на мониторе, дисплее, положение аварийных сигнализаторов, флажков, блинкеров на момент аварии. Причём обязательно до того, как произойдёт её сброс, квитирование, отключение питания! Это очень важно! Упустить какую-нибудь важную информацию - значит непременно увеличить время, затраченное на ремонт. Осмотрите всю имеющуюся индикацию - и аварийную, и рабочую, и запомните все показания. Откройте шкафы управления и запомните (запишите) состояние внутренней индикации при её наличии. Пошатайте платы, установленные на материнке, в корпусе прибора шлейфы, блоки. Может, неисправность исчезнет. И обязательно прочистите радиаторы охлаждения.

Иногда имеет смысл проверить напряжение на каком-нибудь подозрительном индикаторе, особенно если им является лампа накаливания. Внимательно прочтите показания монитора (дисплея), при его наличии. Расшифруйте коды ошибок. Посмотрите таблицы входных и выходных сигналов на момент аварии, запишите их состояние. Если прибор обладает функцией записи происходящих с ним процессов, не забудьте прочесть и проанализировать такой журнал событий.

Не стесняйтесь — понюхайте прибор. Нет ли характерного запаха горелой изоляции? Особое внимание уделите изделиям из карболита и других реактивных пластмасс. Нечасто, но бывает, что их пробивает, и пробой этот порою очень плохо видно, особенно если изолятор чёрного цвета. Из-за своих реактивных свойств эти пластмассы не коробит при сильном нагреве, что также затрудняет обнаружение пробитой изоляции.

Посмотрите, нет ли потемневшей изоляции обмоток реле, пускателей, электродвигателей. Нет ли потемневших резисторов и изменивших нормальный цвет и форму других электрорадиоэлементов.

Нет ли вздувшихся или «стрельнувших» конденсаторов.

Проверьте, нет ли в приборе воды, грязи, посторонних предметов.

Посмотрите, нет ли перекоса разъёма, или блок/плата не до конца вставлены в своё место. Попробуйте вынуть и заново вставить их.

Возможно, какой-либо переключатель на приборе стоит в не соответствующем положении. Заела кнопка, либо подвижные контакты у переключателя стали в промежуточном, не зафиксированном положении. Возможно пропал контакт в каком-нибудь тумблере, переключателе, потенциометре. Потрогайте их все (при обесточенном приборе), пошевелите, повключайте. Лишним это не будет.

Проверьте на предмет заклинивания механические части исполнительных органов - проверните роторы электродвигателей, шаговых двигателей. Подвигайте по необходимости другие механизмы. Сравните прилагаемое при этом усилие с другими такими же рабочими устройствами, если конечно есть такая возможность.

Осмотрите внутренности прибора в работающем состоянии - возможно увидите сильное искрение в контактах реле, пускателей, переключателей, что будет свидетельствовать о чрезмерно высокой величине тока в этой цепи. А это уже хорошая зацепка для поиска неисправности. Часто виной такой поломки бывает дефект какого-либо датчика. Эти посредники между внешним миром и прибором, которому они служат, обычно вынесены далеко за порубежье самого корпуса прибора. И при этом работают они обычно в более агрессивной среде, чем внутренне части прибора, которые так или иначе, но защищены от внешнего воздействия. Поэтому все датчики требуют повышенного внимания к себе. Проверьте их работоспособность и не поленитесь почистить от загрязнения. Концевые выключатели, различные блокирующие контакты и прочие датчики с гальваническими контактами - являются подозреваемыми с высоким приоритетом. Да и вообще любой «сухой контакт» т.е. не пропаянный, должен стать элементом пристального внимания.

И ещё момент - если прибор прослужил уже немало времени, то следует обратить внимание на элементы, наиболее подверженные какому-либо износу или изменению своих параметров с течением времени. Например: механические узлы и детали; элементы, подвергающиеся во время работы повышенному нагреву или иному агрессивному воздействию; электролитические конденсаторы, некоторые виды которых склонны терять ёмкость со временем из-за высыхания электролита; все контактные соединения; органы управления прибором.

Практически все виды «сухих» контактов с течением времени теряют свою надёжность. Особое внимание следует уделить контактам с серебряным покрытием. Если прибор долгое время проработал без технического обслуживания, рекомендую перед тем, как приступать к углублённому поиску неисправности, сделать профилактику контактам - осветлить их обычным ластиком и протереть спиртом. Внимание! Никогда не пользуйся абразивными шкурками для чистки посеребрённых и позолоченных контактов. Это верная смерть разъёму. Покрытие серебром или золотом делается всегда очень тонким слоем, и стереть абразивом его до меди очень легко. Полезно провести процедуру самоочистки контактов розеточной части разъёма, на профессиональном сленге «мамы»: соедините-разъедините разъём несколько раз, от трения пружинящие контакты немного очищаются. Ещё советую, работая с любыми контактными соединениями, не трогать их руками - масляные пятна от пальцев негативно влияют на надёжность электрического контакта. Чистота залог надёжной работы контакта.

Первейшее дело - проверить срабатывание какой-либо блокировки, защиты в начале ремонта. (В любой нормальной технической документации на прибор есть глава с подробным описанием применяемых в нём блокировок.)

После осмотра и проверки питания прикиньте навскидку - что наиболее вероятно сломалось в приборе, и проверьте эти версии. Сразу в дебри прибора не стоит лезть. Сначала проверьте всю периферию, особенно исправность исполнительных органов - возможно сломался не сам прибор, а какой-либо механизм, управляемый им. Вообще рекомендуется изучить, пусть и не до тонкостей, весь производственный процесс, участником которого является подопечный прибор. Когда очевидные версии исчерпаны - вот тогда садитесь за свой рабочий стол, заваривайте чайку, раскладывайте схемы и прочую документацию на прибор и «рожайте» новые идеи. Думайте, что ещё могло вызвать эту болезнь прибора.

Через некоторое время у вас должно «родиться» определённое количество новых версий. Тут рекомендую не спешить бежать проверять их. Сядьте где-нибудь в спокойной обстановке и подумайте над этими версиями па предмет величины вероятности каждой из них. Тренируйте себя в деле оценки таких вероятностей, а когда накопится опыт в подобной селекции - станете делать ремонт гораздо быстрее.

Самый результативный и надёжный способ проверки подозреваемого блока, узла прибора на работоспособность, как уже говорилось, это замена его на заведомо исправный. Не забывайте при этом внимательно проверять блоки на предмет их полной идентичности. Если будете подключать тестируемый блок к работающему исправно прибору, то по возможности подстрахуйтесь - проверьте блок на предмет завышенных выходных напряжений, короткое замыкание по питанию и в силовой части, и прочие возможные неисправности, которые могут вывести из строя рабочий прибор. Бывает и обратное: подключаешь донорскую рабочую плату в сломанный прибор, проверяешь, что хотел, а когда её возвращаешь назад - она оказывается уже неработоспособной. Такое бывает нечасто, но всё же имейте в виду этот момент.

Если таким образом удалось найти неисправный блок, то дальше локализовать поиск неисправности до конкретного электроэлемента поможет так называемый «сигнатурный анализ». Так называют метод, при котором ремонтник проводит интеллектуальный анализ всех сигналов, коими «живёт» испытуемый узел. Подключите исследуемый блок, узел, плату к прибору с помощью специальных удлинителей-переходников (такие обычно поставляются в комплекте с прибором), чтобы был свободный доступ ко всем электроэлементам. Разложите рядом схему, измерительные приборы и включите питание. Теперь сверьте сигналы в контрольных точках на плате с напряжениями, осциллограммами на схеме (в документации). Если схема и документация не блещут такими подробностями, тут уж напрягайте мозги. Хорошие знания по схемотехнике здесь будут весьма кстати.

Если появились какие-то сомнения, то можно «повесить» на переходник исправную образцовую плату с рабочего прибора и сравнить сигналы. Сверьте со схемой (с документацией) все возможные сигналы, напряжения, осциллограммы. Если найдено отклонение какого-либо сигнала от нормы, не спешите делать вывод о неисправности именно этого электроэлемента. Он может быть не причиной, а всего лишь следствием другого нештатного сигнала, который вынудил этот элемент выдать ложный сигнал. Во время ремонта старайтесь сужать круг поиска, максимально локализовать неисправность. Работая с подозреваемым узлом/блоком, придумывайте такие испытания и измерения для него, которые бы исключили (или подтвердили) причастность этого узла/блока к данной неисправности наверняка! Семь раз подумайте, когда исключаете блок из числа неблагонадёжных. Все сомнения в этом деле должны быть развеяны явными уликами.

Эксперименты делайте всегда осмысленно, метод «научного тыка» не наш метод. Дескать, дай-ка я вот этот провод сюда ткну и посмотрю, что будет. Никогда не уподобляйтесь таким «ремонтёрам». Последствия всякого эксперимента обязательно должны быть продуманы и нести полезную информацию. Бессмысленные же эксперименты - пустая трата времени, и к тому же ещё поломать можно что- нибудь. Развивайте в себе способность логически мыслить, стремитесь видеть чёткие причинно-следственные связи в работе устройства. Даже в работе сломанного прибора есть своя логика, всему есть объяснение. Сможете понять и объяснить нестандартное поведение прибора - найдёте его дефект. В деле ремонта очень важно самым чётким образом представлять себе алгоритм работы прибора. Если у вас есть пробелы в этой области, читайте документацию, спрашивайте всех, кто хоть что-то знает об интересующем вопросе. И не бойтесь спрашивать, вопреки распространённому мнению, это не убавляет авторитет в глазах коллег, а наоборот, умные люди всегда это оценят положительно. Помнить наизусть схему прибора абсолютно ненужно, для этого бумагу придумали. А вот алгоритм его работы надо знать «назубок». И вот вы «трясёте» прибор уже который день. Изучили его так, что кажется дальше некуда. И уже неоднократно пытали все подозреваемые блоки/узлы. Испробованы даже казалось бы самые фантастические варианты, а неисправность так и не найдена. Вы уже начинаете понемногу нервничать, может даже паниковать. Поздравляю! Вы достигли апогея в данном ремонте. И тут поможет только… отдых! Вы просто устали, нужно отвлечься от работы. У вас, как говорят опытные люди, «глаз замылился». Так что бросайте работу и полностью отключите своё внимание от подопечного прибора. Можно заняться другой работой, или вовсе ничем не заниматься. Но о приборе нужно забыть. А вот когда отдохнёте, то сами почувствуете желание продолжить битву. И как часто бывает, после такого перерыва вы вдруг увидите такое простое решение проблемы, что удивитесь несказанно!

А вот с неисправностью третьего типа всё гораздо сложнее. Так как сбои в работе прибора носят обычно случайный характер, то для того чтобы поймать момент проявления сбоя, времени часто требуется очень много. Особенности внешнего осмотра в этом случае заключаются совмещении поиска возможной причины сбоя с проведением профилактических работ. Вот для ориентира перечень некоторых возможных причин появления сбоев.

Плохой контакт (в первую очередь!). Почистите разъёмы все сразу во всём приборе и внимательно осматривайте при этом контакты.

Перегрев (как и переохлаждение) всего прибора, вызванный повышенной (пониженной) температурой окружающей среды, либо вызванный длительной работой с высокой нагрузкой.

Пыль на платах, узлах, блоках.

Загрязнение радиаторов охлаждения. Перегрев полупроводниковых элементов, которые они охлаждают, тоже может быть причиной сбоев.

Помехи в сети питания. Если фильтр питания отсутствует или вышел из строя, либо его фильтрующих свойств недостаточно для данных условий эксплуатации прибора, то сбои в его работе будут нередкими гостями. Попробуйте связать сбои с включением какой-либо нагрузки в той же электросети, от которой питается прибор, и тем самым найти виновника помехи. Возможно именно в соседнем приборе неисправен сетевой фильтр, либо ещё какая другая неисправность в нём, а не в ремонтируемом приборе. По возможности запитайте прибор на некоторое время от бесперебойника с хорошим встроенным сетевым фильтром. Сбои пропадут - ищите проблему в сети.

И здесь, как и в предыдущем случае, самым эффективным способом ремонта является метод замены блоков на заведомо исправные. Меняя блоки и узлы между одинаковыми приборами, внимательно следите за их полной идентичностью. Обратите внимание на наличие персональных настроек в них - различные потенциометры, настроенные контуры индуктивности, переключатели, джемперы, перемычки, программные вставки, ПЗУ с различными версиями прошивок. Если они имеются, то решение о замене принимайте, обдумав все возможные проблемы, которые могут возникнуть в связи с опасностью нарушения работы блока/узла и прибора в целом, из-за разницы в таких настройках. Если всё же имеется острая необходимость в такой замене, то делайте перенастройку блоков с обязательной записью предыдущего состояния - пригодится при возврате.

Бывает так, что заменены все составляющие прибор платы, блоки, узлы, а дефект остался. Значит, логично предположить, что неисправность засела в оставшейся периферии в жгутах проводов, внутри какого-либо разъёма проводок оторвался, может быть дефект кросс-платы. Иногда виноват бывает замятый контакт разъёма, например в боксе для плат. При работе с микропроцессорными системами иногда помогает многократный прогон тестовых программ. Их можно закольцевать или настроить на большое количество циклов. Причём лучше, если они будут именно специализированные тестовые, а не рабочие. Эти программы умеют фиксировать сбой и всю сопутствующую ему информацию. Если умеете, сами напишите такую тестовую программу, с ориентацией на конкретный сбой.

Бывает, что периодичность проявления сбоя имеет некую закономерность. Если сбой можно связать по времени с исполнением какого-либо конкретного процесса в приборе, тогда вам повезло. Это очень хорошая зацепка для анализа. Поэтому всегда внимательно наблюдайте за сбоями прибора, замечайте все обстоятельства, при которых они проявляются, и старайтесь связать их с исполнением какой-либо функции прибора. Длительное наблюдение за сбоящим прибором в этом случае может дать ключ к разгадке тайны сбоя. Если найти зависимость появления сбоя от, например, перегрева, повышения/ понижения напряжения питания, от вибрационного воздействия, это даст некоторое представление о характере неисправности. А дальше - «ищущий да обрящет».

Способ контрольной замены почти всегда приносит положительные результаты. Но в найденном таким образом блоке может быть множество микросхем и других элементов. А значит, есть возможность восстановить работу блока заменой лишь одной, недорогой детальки. Как в этом случае локализовать поиск дальше? Тут тоже не всё потеряно, существуют несколько интересных приёмов. Сигнатурным анализом поймать сбой практически нереально. Поэтому попробуем использовать некоторые нестандартные методы. Нужно спровоцировать блок на сбой при определённом локальном воздействии на пего и при этом надо, чтобы момент проявления сбоя можно было привязать к конкретной детали блока. Вешайте блок на переходник/удлинитель и начинайте его мучить. Если подозреваете в плате микротрещину, можно попробовать закрепить плату на каком-нибудь жёстком основании и деформировать только малые части её площади (углы, края) и гнуть их в разных плоскостях. И наблюдайте при этом за работой прибора - ловите сбой. Можно попробовать постучать ручкой отвёртки по частям платы. Определились с участком платы - берите линзу и внимательно высматривайте трещинку. Нечасто, но иногда всё-таки удаётся обнаружить дефект, и, кстати, при этом далеко не всегда виновной оказывается микротрещина. Гораздо чаще находятся дефекты пайки. Поэтому рекомендуется не только гнуть саму плату, но и шевелить все её электроэлементы, внимательно наблюдая за их паяным соединением. Если подозрительных элементов немного, можно просто сразу все пропаять, чтобы в будущем больше не было проблем с этим блоком.

А вот если в причине сбоя подозревается какой-либо полупроводниковый элемент платы, найти его будет непросто. Но и тут тоже можно словчить, есть такой несколько радикальный способ спровоцировать сбой: в рабочем состоянии нагревайте паяльником по очереди каждый электроэлемент и следите за поведением прибора. К металлическим частям электроэлементов паяльник нужно прикладывать через тонкую пластинку слюды. Греть примерно градусов до 100-120, хотя иногда и больше требуется. При этом, конечно, есть определённая доля вероятности дополнительно испортить какой-ни- будь «невинный» элемент на плате, но стоит ли рисковать в этом случае, это уже решать вам. Можно попробовать наоборот, охлаждать льдинкой. Тоже не часто, но всё же можно и таким способом попробовать, как у нас говорят, - «выковырять клопа». Если уж сильно припекло, и при наличии возможности, конечно, то меняйте все подряд полупроводники на плате. Очерёдность замены - по нисходящей эиергоиасыщеипости. Меняйте блоками по нескольку штук, периодически проверяя работоспособность блока на отсутствие сбоев. Попробуйте хорошенько пропаять все подряд электроэлементы на плате, иногда только уже одна эта процедура возвращает прибор к здоровой жизни. Вообще с неисправностью такого типа никогда нельзя гарантировать полное выздоровление прибора. Часто бывает так, что вы во время поиска неисправности шевельнули случайно какой-то элемент, у которого был слабый контакт. При этом неисправность исчезла, но скорее всего этот контакт опять себя проявит со временем. Ремонт редко проявляющегося сбоя - занятие неблагодарное, времени и усилий требует много, а гарантии, что прибор будет обязательно отремонтирован, нет никакой. Поэтому многие мастера часто отказываются браться за ремонт таких капризных приборов, и, честно говоря, я их за это не виню.

Повреждение в электросхемах кранов

Электрооборудование башенного крана состоит из большого числа , электрических аппаратов и приборов, связанных между собой электропроводкой, длина которой достигает нескольких тысяч метров. В процессе работы крана могут возникать повреждения в электрических схемах. Эти повреждения могут быть вызваны выходом из строя элементов машин и аппаратов, обрывом электропроводки и повреждением изоляции.

Методы устранения неисправностей в электрических схемах кранов

Неисправности устраняют в два этапа. Сначала ищут неисправный участок схемы, а затем восстанавливают его. Наиболее сложный первый этап. Умение выявить место неисправности в наиболее короткий срок и с наименьшими затратами труда имеет очень важное значение, так как позволяет значительно сократить простои крана. Восстановление поврежденного участка обычно сводится к замене неисправного элемента (контакта, провода) или соединению оборванной электропроводки.

Неисправности электрических схем можно разделить на четыре группы: обрыв электрической цепи; ; замыкание на корпус (пробой изоляции); возникновение обходной цепи при замыкании между собой проводов. Все эти неисправности могут иметь различные внешние проявления в зависимости от особенностей крана. Поэтому при устранении неисправности следует тщательно проанализировать работу схемы во всех режимах, выявить отклонения в работе отдельных механизмов крана и только после этого приступить к поиску повреждений в той части схемы, которая может вызвать эти отклонения.

Нельзя дать методику, пригодную для поисков любого случая неисправности, поскольку даже одинаковые схемы привода для разных механизмов крана имеют свои особенности. Однако некоторые общие правила могут быть использованы при анализе любой крановой электросхемы.

В первую очередь определяют, в какой цепи - силовой или управления - возникла неисправность.

Рассмотрим пример неисправности электрической схемы привода механизма поворота крана С-981А. Неисправность заключается в том, что механизм поворота не включается в направлении Влево. Все остальные механизмы, в том числе и механизм поворота в направлении Вправо, работают.

Если при пробном включении рукоятки командоконтроллера в первое положение Влево не включается К2 (рис 1, а), неисправность следует искать в цепи управления, т. е. этого пускателя (цепь: провод 27, контакт В1-3 пускателя К2 и перемычки между главными контактами пускателя К2 и пускателя К1.


Рис. 1. Поиск места неисправности в электрической схеме привода поворота крана С-981А;

А - принципиальная электрическая схема привода поворота крана; б - монтажная электрическая схема реверсивного магнитного пускателя; /, //, ///, IV - последовательность включения вольтметра при проверке цепи

Место обрыва можно определить, проверяя цепь с помощью вольтметра или контрольной лампы, которые включают, как показано на рисунке. Первое включение служит для контроля работы самого вольтметра (контрольной лампы). Допустим, что при подключении вольтметра к клемме 31 он показывает напряжение (лампа горит), а при подключении к клемме 51 не показывает. Следовательно, обрыв находится между этими клеммами. На рисунке видно, что в этот участок входит конечный выключатель ВК2 и провода, соединяющие его с клеммами шкафа управления.

Пользуясь этим способом для выявления места обрыва цепи необходимо строго соблюдать : работать в диэлектрических перчатках и галошах или, стоя на изолирующей подставке, не прикасаться к контактам и оголенным проводникам.

При использовании для проверки контрольной лампы принимают меры против включения магнитного пускателя К2 и механизма поворота крана. Для этого закрепляют якорь магнитного пускателя в положении Выключено. Лампа в холодном состоянии имеет небольшое сопротивление (в несколько раз меньшее, чем уторящей лампы) и при подключении ее к клемме 31 образуется замкнутая цепь (провод 27, контрольная лампа, катушка К2, провод 28), что вызывает срабатывание пускателя К2. При пользовании вольтметром пускатель не может включиться, так как обмотка вольтметра имеет большое сопротивление.

Проверяя цепь для определения места обрыва, следует помнить, что у многих кранов часть цепи работает на переменном токе, а часть - на постоянном. При проверке клеммы вольтметра (лампы) подключают к источнику постоянного тока, а при проверке цепи переменного тока - к фазе переменного тока. Во время работы следует обязательно пользоваться электрическими схемами, так как ошибочное включение лампы в фазу переменного тока при проверке цепи, работающей на постоянном токе, может привести к повреждению выпрямительных устройств.

При поиске места замыкания на корпус (пробоя изоляции) участок (с предполагаемым пробоем) отсоединяют от источника тока, а вольтметр (лампу) подключают к источнику тока и проверяемому участку. В нормальном состоянии отсоединенный участок изолирован от металлоконструкции крана и вольтметр (лампа) ничего не покажет. При пробое вольтметр показывает напряжение, а лампа горит. Последовательно отсоединяя отдельные части проверяемого участка цепи, можно найти поврежденное место.

Если, например, в катушке К2 (см. рис. 1) пробило изоляцию, то при отключении катушки от привода 28 и присоединении вольтметра к клеммам 27 и 51 (контакт В1-3 командоконтроллера разомкнут) вольтметр покажет напряжение.

Значительно эффективней и безопасней производить проверку цепи с помощью омметра или пробника. Пробник состоит из милливольтметра с пределом измерения 0-75 мВ, последовательно соединенного с резистором R = 40 - 60 Ом и батарейкой 4,5 В от карманного фонарика. Выводы пробника А и В служат для подключения к клеммам проверяемой цепи. Методика поиска места неисправности аналогична описанной выше, но кран отключают от внешней сети, так как у омметра и пробника имеются свои источники тока.

При использовании омметра или пробника полностью исключается возможность поражения током, кроме того, с их помощью можно обнаружить место короткого замыкания в проводах.

Цепи управления (цепи защиты) у кранов различных типов выполнены по общему принципу, отличаются они только количеством последовательно включенных аппаратов и имеют общие признаки неисправности. Любую цепь защиты можно условно разделить на три участка: участок с нулевыми контактами контроллеров и кнопкой включения линейного контактора; участок, блокирующий нулевые контакты контроллеров и кнопку при включении контактора и замыкании его блок-контактов (цепь блокировки); общий участок, в который включены аварийные выключатели, контакты максимальных реле и .

Внешним признаком обрыва цепи каждого участка служит определенный характер работы линейного контактора. При обрыве цепи на первом участке линейный контактор не включается, когда нажимают кнопку, но включается, когда поворачивают вручную подвижную часть контактора до замыкания блок-контактов. При пробном включении контактора -вручную необходимо принять следующие меры безопасности: все контроллеры установить в нулевое положение; поворачивать подвижную часть контактора либо с помощью монтерского инструмента с изолированными ручками, либо в диэлектрических перчатках.

Если цепь оборвана на втором участке, линейный контактор включается при нажатии кнопки, но отпадает, когда кнопка возвращается в нормальное положение.

Когда цепь оборвана на третьем участке, линейный не включается ни от кнопки, ни при переводе его во включенное положение вручную.

Неисправности электродвигателей

Из разнообразных остановимся на наиболее распространенных.

Короткое замыкание в обмотке ротора. Признак неисправности: включение происходит рывком, обороты двигателя не зависят от позиции контроллера. Для проверки отсоединяют ротор двигателя от пускорегулирующего сопротивления. Если при включении статора двигатель будет работать, обмотка ротора закорочена.

Короткое замыкание в обмотке статора. Признак неисправности: двигатель при включении не вращается, срабатывает максимальная защита.

Обрыв одной из фаз статора при соединении двигателя звездой. Признаки неисправности: двигатель не создает вращающего момента и, следовательно, механизм не проворачивается. Чтобы обнаружить неисправность, двигатель отсоединяют от сети и каждую фазу в отдельности проверяют контрольной лампой. Для проверки используют низкое напряжение (12 В). Если обрыва нет, лампа будет гореть полным накалом, а при проверке фазы, имеющей обрыв, лампа гореть не будет.

Обрыв в цепи одной фазы ротора. Признак неисправности: двигатель вращается с половинной скоростью и сильно гудит. При обрыве фазы статора или ротора у грузовой и стреловой лебедок возможно падение груза (стрелы) независимо от направления включения контроллера.

Импульсный блок питания вмонтирован в большинство бытовых приборов. Как показывает практика, именно этот узел довольно часто выходит из строя, требуя замены.

Большое напряжение, постоянно проходящее через блок питания, не лучшим образом сказывается на его элементах. И дело здесь не в ошибках производителей. Повышая срок службы путём монтирования дополнительной защиты, можно добиться надёжности защищаемых деталей, но потерять её на только что установленных. Кроме того, дополнительные элементы усложняют ремонт – становится трудно разобраться во всех хитросплетениях полученной схемы.

Производители решили эту проблему радикально, удешевив ИБП и сделав его монолитным, неразборным. Такие одноразовые устройства встречаются всё чаще. Но, если вам повезло – отказал разборной блок, самостоятельный ремонт вполне возможен.

Принцип работы у всех ИБП одинаков. Различия касаются только схем и типов деталей. Поэтому разобраться в поломке, имея основополагающие познания в электрике, довольно просто.

Для ремонта понадобится вольтметр.

С его помощью измеряется напряжение на электролитическом конденсаторе. Он выделен на фото. Если напряжение 300 В – предохранитель цел и все остальные, связанные с ним элементы (сетевой фильтр, кабель питания, входные ) исправны.

Бывают модели с двумя небольшими конденсаторами. В этом случае о нормальном функционировании упомянутых элементов свидетельствует постоянное напряжение 150 В на каждом из конденсаторов.

При отсутствии напряжения нужно прозвонить диоды выпрямительного моста, конденсатор, сам предохранитель и так далее. Коварство предохранителей в том, что, выйдя из строя, они внешне ничем не отличаются от рабочих образцов. Обнаружить неисправность можно только через прозвонку – сгоревший предохранитель покажет высокое сопротивление.

Обнаружив неисправный предохранитель, следует внимательно осмотреть плату, так как выходит он из строя зачастую одновременно с другими элементами. Испорченный конденсатор легко заметить невооружённым глазом – он будет разрушен или вздут.
В таком случае он не нуждается в прозванивании, а просто выпаивается. Также выпаиваются и прозваниваются следующие элементы:

  • силовой или выпрямительный мост (выглядит как монолитный блок или может состоять из четырёх диодов);
  • конденсатор фильтра (выглядит как большой блок или несколько блоков, соединённых параллельно или последовательно), находящийся в высоковольтной части блока;
  • транзисторы, установленные на радиаторе (это – силовые ключи).

Важно. Все детали выпаиваются и заменяются одновременно! Замена по очереди будет приводить каждый раз к выгоранию силовой части.

Сгоревшие элементы нужно заменить на новые. Радиорынок предлагает богатый ассортимент деталей для блоков питания. Подобрать неплохие варианты по минимальным расценкам довольно легко.

На заметку. Предохранитель можно успешно заменить кусочком медного провода. Толщина провода в 0.11 миллиметра соответствует предохранителю на 3 Ампера.
Причины поломки :
  • перепады напряжения;
  • отсутствие защиты (место под неё есть, но сам элемент не установлен – так производители экономят).

Решение этой неисправности импульсных блоков питания:

  • установить защиту (не всегда возможно подобрать нужную деталь);
  • или использовать фильтр сетевого напряжения с хорошими защитными элементами (не перемычками!).

Что делать, если нет выходного напряжения?

Ещё одна часто встречающаяся причина неисправности блока питания никак не связана с предохранителем. Речь идёт об отсутствии выходного напряжения при полностью исправном таком элементе.
Решение проблемы :

  1. Вздутый конденсатор – требуется выпаивание и замена.
  2. Вышедший из строя дроссель – необходимо вынуть элемент и поменять обмотку. Повреждённый провод разматывается. При этом ведётся подсчёт витков. Затем на это же количество оборотов наматывается новый провод подходящего . Деталь возвращается на место.
  3. Деформированные диоды моста заменяются новыми.
  4. При необходимости детали проверяются тестером (если визуально не обнаружено повреждений).

Перед тем, необходимо обязательно изучить правила безопасного использования такого инструмента. Таким прибором нельзя светить в отражающие поверхности, поскольку можно повредить глаза.

Вполне по силам соорудить самому. В качестве нагнетателя используется вентилятор, а нагревателя — спираль. Наиболее оптимальным вариантом является схема с тиристором.

Причины поломки :

  • плохая вентиляция.

Решение :

  • не закрывать вентиляционные отверстия;
  • обеспечить оптимальный температурный режим – охлаждение и вентиляцию.

Что необходимо запомнить :

  1. Первое подключение блока производится к лампе мощностью 25 Ватт. Особо важно это после замены диодов или транзистора! Если где-то допущена ошибка или не замечена неисправность, проходящий ток не повредит всё устройство в целом.
  2. Начиная работу, не стоит забывать, что на электролитических конденсаторах длительное время сохраняется остаточный разряд. Перед выпаиванием деталей необходимо закоротить выводы конденсатора. Напрямую этого делать нельзя. Следует произвести закорачивание через сопротивление номиналом выше 0,5 В.
Если весь ИБП тщательно проверен, но всё равно не работает, можно обратиться в ремонтную мастерскую. Возможно, ваш случай относится к сложной поломке всё-таки поддающейся исправлению.
По статистике около 5% поломок требуют замены блока. К счастью, это устройство всегда доступно. В магазинах можно обнаружить богатый ассортимент в разных ценовых категориях.

Особенности ремонта импульсного блока питания DVD на видео