Защита от воздействия эмп свч. Экранирование свч излучения микроволновой печи Защита от свч излучений на мобильный

Среди огромного разнообразия электромагнитных волн, существующих в природе, весьма скромное место занимает микроволновое или сверхвысокочастотное излучение (СВЧ). Отыскать этот частотный диапазон можно между радиоволнами и инфракрасной частью спектра. Протяжённость его не особенно велика. Это волны длиной от 30 см до 1 мм.

Поговорим о его происхождении, свойствах и роли в сфере обитания человека, о том, как влияет этот «молчаливый невидимка» на человеческий организм.

Источники СВЧ-излучения

Существуют природные источники микроволнового излучения - Солнце и другие космические объекты. На фоне их излучения и происходило формирование и развитие человеческой цивилизации.

Но в наш, насыщенный всевозможными техническими достижениями век, к естественному фону присовокупились ещё и рукотворные источники:

  • радиолокационные и радионавигационные установки;
  • системы спутникового телевидения;
  • сотовые телефоны и микроволновые печи.

Как микроволновое излучение влияет на здоровье человека

Результаты исследования влияния микроволнового излучения на человека позволили установить, что СВЧ лучи не обладают ионизирующим действием. Ионизированные молекулы - это дефектные частички вещества, приводящие к мутации хромосом. В результате живые клетки могут приобрести новые (дефектные) признаки. Этот вывод не означает, что микроволновое излучение не оказывает вред на человека.

Изучение влияния СВЧ-лучей на человека, позволило установить следующую картину - при их попадании на облучаемую поверхность, происходит частичное поглощение поступающей энергии тканями человека. В результате в них возбуждаются высокочастотные токи, нагревающие организм.

Как реакция механизма терморегуляции, следует усиление циркуляции крови. Если облучение было локальным, возможен быстрый отвод тепла от разогретых участков. При общем облучении такой возможности нет, поэтому оно является более опасным.

Поскольку циркуляция крови выполняет роль охлаждающего фактора, то в органах, обеднённых кровеносными сосудами, тепловой эффект выражен наиболее ярко. В первую очередь - в хрусталике глаза, вызывая его помутнение и разрушение. К сожалению, эти изменения необратимы.

Наиболее значительной поглощательной способностью отличаются ткани с большим содержанием жидкого компонента: крови, лимфы, слизистой желудка, кишечника, хрусталика глаза.

В результате могут наблюдаться:

  • изменения в крови и щитовидной железе;
  • снижение эффективности адаптационных и обменных процессов;
  • изменения в психической сфере, которые могут привести к депрессивным состояниям, а у людей с неустойчивой психикой - спровоцировать склонность к суициду.

Микроволновое излучение обладает кумулятивным эффектом. Если в первое время его воздействие проходит бессимптомно, то постепенно начинают формироваться патологические состояния. Вначале они проявляются в учащении головных болей, быстрой утомляемости, нарушениях сна, повышении артериального давления, сердечных болях.

При длительном и регулярном воздействии СВЧ излучение приводит к глубинным изменениям, перечисленным ранее. То есть, можно утверждать, что СВЧ излучение оказывает негативное влияние на здоровье человека. Причём отмечена возрастная чувствительность к микроволнам - молодые организмы оказались более подверженными влиянию СВЧ ЭМП (электромагнитного поля).

Средства защиты от СВЧ-излучения

Характер воздействия СВЧ излучения на человека зависит от следующих факторов:

  • удалённости от источника излучения и его интенсивности;
  • продолжительности облучения;
  • длины волны;
  • вида излучения (непрерывное или импульсное);
  • внешних условий;
  • состояния организма.

Для количественной оценки опасности введено понятие плотности излучения и допустимой нормы облучения. В нашей стране этот стандарт взят с десятикратным «запасом прочности» и равен 10 микроватт на сантиметр (10 мкВт/см). Это означает, что мощность потока СВЧ энергии, на рабочем месте человека не должна превышать 10 мкВт на каждый сантиметр поверхности.

Как же быть? Сам собой напрашивается вывод, что следует всячески избегать воздействия микроволновых лучей. Уменьшить воздействие СВЧ-излучения в сфере быта достаточно просто: следует ограничить время контакта с бытовыми его источниками.

Совершенно иной механизм защиты должен быть у людей, чья профессиональная деятельность связана с воздействием СВЧ радиоволн. Средства защиты от СВЧ-излучения подразделяются на общие и индивидуальные.

Поток излучаемой энергии убывает обратно пропорционально увеличению квадрата расстояния между излучателем и облучаемой поверхностью. Поэтому важнейшей коллективной защитной мерой является увеличение расстояния до источника излучения.

Другими действенными мерами по защите от СВЧ-излучения являются следующие:

Большая часть из них базируется на основных свойствах микроволнового излучения - отражении и поглощении веществом облучаемой поверхности. Поэтому защитные экраны подразделяются на отражающие и поглощающие.

Отражательные экраны выполняются из листового металла, металлической сетки и металлизированной ткани. Арсенал защитных экранов достаточно разнообразен. Это листовые экраны из однородного металла и многослойные пакеты, включающие слои изоляционных и поглощающих материалов (шунгита, углеродистых соединение) и т. д.

Конечным звеном в этой цепи являются средства индивидуальной защиты от СВЧ-излучения. Они включают спецодежду, выполненную из металлизированной ткани (халаты и фартуки, перчатки, накидки с капюшонами и вмонтированными в них очками). Очки покрыты тончайшим слоем металла, отражающего излучение. Их ношение обязательно при облучении в 1 мкВт/см.

Ношение спецодежды снижает уровень облучения в 100–1000 раз.

Польза микроволнового излучения

Вся предыдущая информация c негативной направленностью, имеет своей целью упредить нашего читателя от, исходящей от СВЧ-излучения, опасности. Однако среди специфических действий микроволновых лучей встречается термин стимуляция, то есть улучшение под их влиянием общего состояния организма или чувствительности его органов. То есть воздействие СВЧ-излучения на человека может быть и полезным. Терапевтическое свойство микроволнового излучения основано на его биологическом действии при физиотерапии.

Излучения, исходящие от специализированного медицинского генератора, проникает в организм человека на заданную глубину, вызывая прогревание тканей и целую систему полезных реакций. Сеансы СВЧ-процедур оказывают болеутоляющее и противозудное действие.

Их с успехом используют для лечения фронтита и гайморита, невралгии тройничного нерва.

Для воздействия на эндокринные органы, органы дыхания, почки, и лечения гинекологических заболеваний используют микроволновое излучение с большей проникающей способностью.

Исследование влияния СВЧ-излучения на организм человека начались несколько десятилетий назад. Накопленных знаний достаточно, чтобы быть уверенными в безвредности естественного фона этих излучений для человека.

Разнообразные генераторы этих частот, создают дополнительную дозу воздействия. Однако, их доля очень мала, а, используемая защита достаточно надёжна. Поэтому фобии об их огромном вреде не более чем миф, если соблюдаются все условия эксплуатации и защиты от промышленных и бытовых источников микроволновых излучателей.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ

РОССИЙСКОЕ НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ "РОСУЧПРИБОР"

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «ИНТОС»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению лабораторной работы

по курсу

«Безопасность жизнедеятельности».

ЗАЩИТА ОТ СВЕРХВЫСОКОЧАСТОТНОГО ИЗЛУЧЕНИЯ

к.т.н., доц. Поленов А.Н.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ

«ЗАЩИТА ОТ СВЕРХВЫСОКОЧАСТОТНОГО ИЗЛУЧЕНИЯ» .

Цель лабораторной работы - ознакомить студентов с характеристиками электромагнитного излучения, нормативными требованиями к электромагнитному излучению, провести измерения, электромагнитного излучения СВЧ диапазона в зависимости от расстояния до источника, и оценить эффективность защиты от СВЧ излучения с помощью экранов.

1. ОБЩИЕ СВЕДЕНИЯ

Электромагнитные поля (ЭМП) генерируются токами, изменяющимися во времени. Спектр электромагнитных (ЭМ) колебаний находится в широких пределах по длине волны: от 1000 км до 0,001 мкм и менее, а по частоте f- от 3 10 2 до 3 10 20 Гц, включая радиоволны, оптические и ионизирующие излучения. В настоящее время наиболее широкое применение в различных отраслях находит ЭМ энергия ненонизирующей части спектра. Это касается, прежде всего, ЭМ полей радиочастот. .Они подразделяются по длине волны наряд диапазонов (табл. 1).

Таблица 1

По международному регламенту

Название диапазона

Длина волны

Диапазон частот

Частота "

Название диапазона частот

Длинные волны (ДB)

Высокие частоты (ВЧ).

от 3 до 300 кГц

Низкие (НЧ)

Средние волны (СВ)

от 0,3 до 3 МГц

(.Средине (СЧ)

Короткие волны (KB)

от 3 до 30 MГц

Высокие (ВЧ)

Ультракороткие волны ракороткне юлим

Высокие частоты (УВЧ)

от 30 ло 300МГ ц

Очень высокие

Микроволны

дециметровые (дм);

1 м - 10 см

Сверхвысокие частоты

" от 0,3 J до 3 ГГц -

Ультравысокие (УВЧ)

сантиметровые (см);

от 3 ло.30 ГГц

Сверхвысокие (СВЧ1

миллиметровые: (мм);

1см - 1 мм "

от 30 до 300 ГГц

Крайневысокие (КВЧ)

ЭМ поле складывается из электрического поля, обусловленного напряжением на токоведущих частях электроустановок, и магнитного, возникающего при прохождении тока по этим частям. Волны ЭМП распространяются на большие расстояния.

В промышленности источниками ЭМП - являются электрические установки, работающие на переменном токе частотой от. 10 до 10 6 Гц, приборы автоматики, электрические установки с промышленной" частотой 50 - 60 Гц, установки высокочастотного нагрева (сушка древесины, склеивание и нагрев пластмасс и др.): В соответствии с ГОСТ 12.1.006-84 значения предельно допустимой напряженности ЭМП радиочастот в диапазоне 0,06 - 300 Мгц на рабочих местах приведены в табл.2.

Таблица 2,

Составляющая ЭМП, по которой оценивается

его воздействие, н.диапазон частот МГц

Предельно допустимая напряженность ЭМП

в течении рабочего дня

Электрическая составляющая:

Магнитная составляющая:

Предельно.допустимые уровни.(ПДУ) по электрической составляющей,.согласно- не должны превышать; 20 В/м,."д по: магнитной составляющей.-.5 А/м. ЭМП характеризуется совокупностью переменных электрических и магнитных составляющих. Различные диапазоны радиоволн объединяет общая физическая природа, но они существенно различаются по заключенной в них энергии, характеру распространения, поглощения, отражения, а в следствие этого, - по действию на среду, в т.ч. и на человека. Чем короче длина волны и больше частота колебаний, тем больше энергии несет в себе квант ЭМ. излучения. Связь между энергией Y и. частотой f колебаний определяется как:

Y = h f , или, поскольку длина волны λ и частота свяваны соотношением f = с/ λ

Y = h с/ λ

где: с - скорость распространения электромагнитных волн в воздухе = 3 10 8 м/с),

h -постоянная Планка, равная 6,6 10 34 Вт/см 2 .

ЭМП вокруг любого источника излучения разделяют на 3 зоны: ближнюю – зону индукции, промежуточную - зону интерференции и дальнюю - волновую зону. Если геометрические размеры источника излучения меньше длины волны излучения λ (т.е. источник можно рассматривать как точечный), границы зон определяются следующими расстояниями R :

    ближняя зона (индукции) R < λ/2π . ..

    промежуточная зона (интерференции) λ/2π < R < 2π λ

    дальняя зона (волновая) R > 2π λ."

Работающие с источниками излучения НЧ, СЧ и, в известной степени, ВЧ и ОВЧ диапазонов находятся в зоне индукции. При эксплуатации генераторов СВЧ и КВЧ диапазонов работающие часто находятся в волновой зоне.

В волновой зоне интенсивность поля оценивается величиной плотности потока энергии (ППЭ), т.е. количеством энергии, падающей на единицу площади поверхности. В этом случае ППЭ выражается в Вт/м 2 или производных единицах: мВт/см 2 , мкВт/см 2 . ЭМП по мере удаления от источника излучения быстро затухает. ЭМ волны диапазона УВЧ, СВЧ и КВЧ (микроволны), используются в радиолокации, радиоастрономии, радиоспектроскопии, геодезии, "дефектоскопии," физиотерапии. Иногда ЭМП УВЧ диапазона применяются, для вулканизации резины, термической обработки пищевых продуктов, стерилизации, пастеризации вторичного разогрева пищевых продуктов. СВЧ аппараты используются для микроволновой терапии.

Наиболее опасными для человека являются ЭМП высокой и сверхвысокой частот. Критерием оценки степени воздействия ЭМП может служить количество электромагнитной энергии, поглощаемой им при прибивании в электрическом поле. Величина поглащаемой человеком энергии зависит от квадрата силы тока, протекающего через его тело, времени пребывания в электрическом поле и проводимости тканей человека.

По законам физики –изменения в веществе может.вызвать только та часть энергии излучения, которая поглощается этим веществом, а отраженная,или проходящая через него энергия действия не оказывает. Электромагнитные волны лишь частично поглощаются тканями биологического объекта, поэтому биологический эффект зависит от. физических параметров ЭМП радиочастотного диапазона: длины волны (частоты колебаний), интенсивности и режима излучения (непрерывный, прерывистый, импульсно-модулированный), продолжительности и характера облучения организма, а также, от площади.облучаемой поверхности и анатомического строения органа или ткани.. Степень поглощения энергии тканями зависит от их способности к ее отражению на границе раздела, определяемой содержанием воды в тканях и другими их особенностями. Колебания дипольных молекул воды и ионов, содержащихся в тканях, приводят к преобразованию электромагнитной –энергии внешнего поля в тепловую, что сопровождается повышением температуры тела или локальным избирательным нагревом тканей, органов, клеток, особенно с плохой терморегуляцией (хрусталик глаза, стекловидное тело, семенники и.др.). Тепловой эффект. зависит от интенсивности облучения. Пороговые интенсивности теплового, действия ЭМП на организм животного составляют:

для диапазона средних частот - 8000 В/м 2 ,

высоких - 2250-В/м 2 ,.

очень высоких - 150 В/м 2 ,

дециметровых-- 40 мВт/см 2 ,

сантиметровых- 10 мВт/"см 2 ,

миллиметровых - 7 мВт/см 2

ЭМП с меньшей интенсивностью не обладает термическим, действием на организм, но вызывает слабовыраженные эффекты аналогичной направленности, что согласно ряду теорий считается специфическим нетепловым действием, т.е. переходом ЭМ энергии, в объекте в какую-то форму нетепловой энергии. Нарушение гормонального равновесия при наличии СВЧ-фона на производстве следует рассматривать как противопоказания для профессиональной деятельности, связанной С нервной напряженностью труда и частыми стрессовыми ситуациями.

Постоянные изменения в крови наблюдаются при ППЭ выше 1 мВт/см 2 . Это фазовые изменения лейкоцитов, эритроцитов и гемоглобина. Поражение глаз в виде помутнения хрусталика (катаракты) - последствия воздействия ЭМП в условиях производства. При воздействии миллиметровых волн изменения наступают немедленно, но быстро проходят. В то же время при частотах около 55 ГГц возникают устойчивые изменения, являющиеся результатом повреждения эпителия роговицы.

Клинические исследования людей, подвергшихся производственному воздействия СВЧ-облучения при его интенсивности ниже 10 мВт/см 2 , показали отсутствие каких-либо проявлений катаракты.

Воздействие ЭМП с уровнями, превышающими допустимые, приводит к изменениям функционального состояния сердечнососудистой и Центральной нервной систем, нарушению обменных, процессов . При воздействии значительных интенсивностей СВЧ поля может возникать более или менее выраженное помутнение хрусталика глаза (катаракты). Нередко отмечают изменения и в составе крови.

В соответствии с санитарными нормами и правилами при работе с источниками ЭМП СВЧ частот предельно допустимые интенсивности ЭМП на рабочих местах приведены в табл. 3,

Таблица 3 . " .

Защитные меры от действия ЭМП сводятся, в основном, к применению защитного экранирования, дистанционного управления устройствами, излучающими ЭМ волны, применению средств индивидуальной защиты. Защитные экраны делятся на:

    отражающие излучение;

    поглощающие излучение.

К первому типу относятся сплошные металлические экраны, экраны из металлической сетки, из металлизированной ткани. Ко второму типу относятся экраны из радиопоглощающих материалов. К средствам индивидуальной защиты (СИЗ) относятся: спецодежда, выполненная из металлизированной ткани: защитные халаты, фартуки, накидки с капюшоном, перчатки, щитки, а также защитные очки, (при интенсивности выше 1 мВт/см 2 ), стекла которых покрыты слоем полупроводниковой окиси олова, или сетчатые очки в виде полумасок из медной или латунной сетки.

2.1. ОПИСАНИЕ СТЕНДА

Внешний вид стенда представлен на рис. 1. Стенд представляет собой стол, выполненный в виде сварного каркаса со столешницей 1, под которой размещаются сменные экраны 2, используемые для изучения экранирующих свойств различных материалов. На столешнице 1 размещены СВЧ печь 3 (источник излучения) и координатное устройство 4. Координатное устройство 4 регистрирует перемещение датчика 5 СВЧ поля по осям «X», «Y». Координата «Z» определяется по шкале, нанесенной на измерительную стойку 6, по которой датчик 5 может свободно перемещаться. Это дает возможность исследовать распределение СВЧ излучения в пространстве со стороны передней панели СВЧ печи (элементы наиболее интенсивного излучения).

Датчик 5 выполнен в виде полувблнового вибратора, рассчитанного на частот 2,45 ГГц и состоящего из диэлектрического корпуса, вибраторов и СВЧ диода. Координатное устройство 4 выполнено в виде планшета, на который нанесена координатная сетка. Планшет приклеен непосредственно к столешнице 1. Стойка 6. изготовлена из диэлектрического материала (органического стекла), чтобы исключить искажение распределения СВЧ поля.

В качестве нагрузки в СВЧ печи огнеупорный шамотный кирпич, устанавливаемый на неподвижную подставку, в качестве которой используется неглубокая фаянсовая тарелка, обеспечивающая стабильность измеряемого сигнала.

Сигнал с датчика 5 поступает на мультиметр 7, размещенный на свободной части столешницы 1 (за пределами координатной сетки).

На столешнице 1 имеются гнезда для установки сменных защитных экранов 2, выполненных из следующих материалов:

сетка из оцинкованной стали с ячейками 50 мм;

сетка из оцинкованной стали с ячейками 10 мм;

лист алюминиевый;

полистирол;

2.2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СТЕНДА

2.2.1 Диапазон плотности потока электромагнитного излучения в изучаемой зоне СВЧ печи, мкВт/см 2 - 0....120

2.2.2.Соотношение показаний мультиметра М 3900 и измерителя

плотности потока ПЗ-19: - 1 мкА = 0,35 мВт/см 2

2.2.3 Значения перемещений датчика относительно

СВЧ печи, мм, не менее:

по оси"X" 500 .

по оси "Y" ±250.

по оси "Z" 300

2.2.4. Мощность СВЧ печи, Вт не более 800

2.2.5. Количество сменных защитных экранов 5:

2.2.6. Размеры экранов, мм: (330 ±-5) х (500 ± 5)

2.2.7. Потребляемая мощность, В A, нe более: 1200

2.2.8. Цена деления шкал, по осям X, Y, Z, мм 10±1

2.2.9. Габаритные размеры стенда, мм, не более:

длина 1200

ширина 650

высота 1200 .

2.2.10Масса стенда, кг, не более 40

2.2.11. Электропитание стенда должно осуществляться от сети переменного тока,

напряжением, В 220 + 22

частотой, Гц 50±0,4

2.2.12. Режим работы СВЧ печи:

Продолжительность работы, мин, не более 5

    продолжительность перерыва между рабочими циклами; с, не менее 30

    уровень мощности, 100%

2.3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПРИ ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

2.3.1. К работе допускаются студенты, ознакомленные с устройством лабораторного стенда, принципом действия и мерами безопасности при проведении лабораторной работы.

2.3.3. Запрещается самостоятельно регулировать или ремонтировать дверь, панель управления, выключатели системы блокировки или.какие-либо другие части печи. Ремонт должен производиться только -специалистами.

2.3.4. СВЧ печь должна быть заземлена. .

2.3.5. Не допускается включение и работа печи без нагрузки. Рекомендуется в перерывах между рабочими циклами оставлять в печи кирпич: При случайном включении печи, кирпич будет выполнять роль нагрузки.

3. ПОРЯДОК ПРОВЕДЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

3.1. Ознакомиться с мерами по технике безопасности при проведении лабораторной работы и строго выполнять их.

3.2. Подключить СВЧ печь к сети переменного тока.

3.3. В печь на подставку (перевернутая тарелка) положить кирпич.

3.4. Установить режим работы печи согласно П.2.2.-12: в соответствии с паспортом на "конкретную СВЧ печь.

Для. СВЧ печи «Плутон» ее включение в рабочий, режим осуществляется в следующей последовательности; открыть дверцу нажатием прямоугольной клавшим; в нижней части лицевой панели; установить ручку «мощность» в крайнее правое положение; установить ручку «время» в положение 5 мни; плотно закрыть дверцу.

3.5. Разместить датчик на отметке 0 по оси X координатной системы. Перемещая датчик по оси У координатной системы и ocи Z (по стоике), определить зоны наиболее интенсивного излучения и с помощью мультиметра зафиксировать их численные значения.

Перемещая стойку с датчиком по координате X (удаляя его от печи до предельной отметки 50 см) снять показания мультиметра дискретно с шагом 20 мм. Данные замеров занести в табл.4. Построить.график распределения, интенсивности излучения в пространстве перед печью.

3.6. Разместить датчик на отметке 0 по оси Х. Зафиксировать показания мультиметра.

3.7. Поочередно устанавливать защитные экраны и фиксировать показания мультиметра.

3.8. Определить эффективность экранирования для каждого экрана по формуле:

δ = ((I – I з)/ I) 100% (1)

где I - показание мультиметра без экрана;

I з - показание мультаметра с экраном.

3.9. Построить диаграмму эффективности экранирования от вида материала защитных экранов.

3.10. Составить отчего работе.

4. ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ

    Общие сведения

    Схема стенда

    Данные измерений (табл. 4 и5) .

Таблица 4

Номер измерения "

Значение Х.см

Значение У, см

Значение Z. см

Интенсивность излучения (показания мультиметра)

Таблица 5

Номера защитных экранов

Эффективность экранирования, δ

4.4. Графики распределения интенсивности излучения в пространстве и диаграмма эффективности экранирования от вида материала защитных экранов.

Дата j * Подпись студента

" БИБЛИОГРАФИЧЕСКИЙ СПИСОК

I.Орхрана.труда Г.Ф. Денисенко. «М: Высшая:ижола, 1985:- 31: 9с.

2. Охрана труда в химической промышленности Г.В. Макаров. - М.: Химия; 1989. - 496 с.

3. Справочник по технике безопасности П.А.Долин. - М.: Энергоатомиздат, 1984.

4.Техника безопасности в электроэнергетических установках. Справочное пособие. П. А, Дояин: - М: 1987.

5. ГОСТ 42.1.006-84. Электромагнитные поля радиочастот. Общие требования.

6. Влияние электромагнитного излучения на жизнедеятельность человека и способы защиты от него. Учебное прсобле. С.Г. Захаров, Т,Т. Каверзнева. СНГТУ, 1992,-74 с.

7. Охрана труда в радио и электронной промышленности. Под редакцией С.Ш.Павлова. - М:, Энергия, 1986.

8. Влияние магнитных полей радиочастот на человека. Ю:Д. Думайский и др.- Киев 1975,-159с.

Защита персонала, обслуживающего установки ВЧ, УВЧ и СВЧ достигается:

    уменьшением излучения непосредственно от самого источника излучения;

    экранированием источника излучения;

    экранированием рабочего места у источника излучений или удалением рабочего места от него (дистанционное управление);

    применением в отдельных случаях средств индивидуальной защиты. Интенсивность ЭМП радиочастот на рабочих местах не должна превышать:

    в диапазоне СВЧ при облучении в течение всего рабочего дня - 10мкВт/см 2 .

    при облучении не более двух часов за рабочий день - 100мкВт/см 2 , при облучении не более 10-15мин за рабочий день -мкВт/см 2 (мВт/см 2), при условии обязательного пользования защитными очками;

    в диапазоне СВЧ для лиц, не связанных профессионально с облучением, и для населения интенсивность излучения не должна превышать 1мк Вт/см 2 . Выбор способа защиты или комбинации их определяются типом источника излучения, рабочим диапазоном волн, характером выполняемых работ.

Для уменьшения интенсивности излучения от источника необходимо:

    при обработке высокочастотной части РЛС, отдельных СВЧ генераторов и т.п. применять различные типы поглотителей мощности, эквиваленты нагрузок;

    использовать имитаторы цели при проверках индикаторных, приемных вычислительных, управляющих и т.п. систем РЛС, когда не требуется включения генераторных и излучающих высокочастотных устройств (передатчиков, антенн);

    использовать волноводные ответвители, ослабители, делители мощности при отработке линий передачи энергии и антенных устройств;

    во всех случаях работы с аппаратурой необходимо убедиться в отсутствии утечек энергии на линиях передачи -местах сочленения элементов волноводного тракта, из катодных выводов магнетронов и т.п.

Экранирование источников излучения и рабочих мест выполняется различно в зависимости от генерируемой мощности, взаимного расположения источника и рабочего места, характера технологического процесса.

Испытания источников излучения на высоком уровне мощности (антенные устройства, комплексы РЛС) должны проводится, как правило, на специальных полигонах.

Требования к производственным помещениям и размещению оборудования:

    действующие генераторы СВЧ, радио и телевизионные передатчики должны размещаться в специально предназначенных помещениях;

    при работе нескольких генераторов СВЧ в одном помещении необходимо принять меры, исключающие превышение ПДУ облучения за счет суммирования энергии излучения;

    при работе генераторов СВЧ, радиопередающих и телевизионных устройств большой мощностью излучения необходимо исключить возможность облучения людей, постоянно находящихся в смежных с производственными помещениях;

    на антенных полях радиостанций, полигонах, аэродромах и на других, не ограниченных помещением участках должны быть обозначены места, где интенсивность облучения может превышать допустимую.

В зависимости от типа источника излучений, его мощности, характера технологического процесса может быть применен один из указанных методов защиты или любая из комбинаций.

Для защиты от проникновения СВЧ энергии в рабочее помещение рекомендуется экранировать источники излучения. Экранирование не должно нарушать процесс регулировки настройки испытания при работе с излучающим устройством. Поэтому при конструкции экранирующих приспособлений необходимо учитывать основные параметры, характеризующие излучение и назначение производственного процесса, связанного с экранирующим источником излучения.

Тип, форма, размеры и материал экранирующего устройства зависит от того, имеет ли место непосредственное излучение, направленное или ненаправленное, непрерывное или импульсное, какова излучаемая мощность и рабочий диапазон частот.

Любая экранирующая система для защиты от проникновения СВЧ энергии основана на радиофизических принципах отражения или поглощения электромагнитной энергии.

Известно, что полное отражение электромагнитной волны обеспечивается материалами с высокой электропроводимостью (металлы), полное поглощение возможно в материалах с плохой электропроводимостью (полупроводники, диэлектрики с большими потерями).

С учетом указанных свойств материалов, характера и параметров источника излучения, особенностей производственного процесса был рекомендован и внедрен в практику ряд типовых экранирующих устройств, которые показали хорошую эффективность.

Типы экранов:

Отражающие экраны . Если производственный процесс основан на непосредственном излучении энергии волн в пространстве, полное или частичное экранирование источника может привести к нарушению процесса или даже к невозможности его осуществления. Волны, отражаемые стенками эксплуатирующих устройств, обращенные в сторону излучателя, будут оказывать влияние на режим работы РЛС: пробой в генераторных лампах передатчиков, изменение его рабочей частоты и т.д.

В подобных случаях рационально применять поглощающие покрытия. Отражающие поверхности экранирующего устройства покрываются материалом, практически полностью поглощающим энергию падающих волн.

В тех случаях, когда имеются только утечки в линиях передачи СВЧ энергии, отражения от стенок экранирующего устройства не оказывают влияния на режим работы излучателя генераторной установки или РЛС в целом, экранировка может быть сделана без поглощающих покрытий.

Экраны могут быть использованы: для экранирования помещения, источника излучения, рабочего места. Все экраны должны быть тщательно заземлены.

Сплошные металлические экраны обеспечивают надежное экранирование при любых, практически встречающихся интенсивностях СВЧ поле с учетом допустимых величин (10мкВт/см 2). Экран может быть изготовлен из металла любой толщины. При толщине экрана в 0,01мм поле СВЧ ослабляется примерно в 100000 раз. Следовательно, ослабление в сплошных металлических экранах достаточно велико и для облегчения веса можно пользоваться даже тонкой металлической фольгой.

Сетчатые экраны обладают худшими экранирующими свойствами. Однако в ряде случаев по техническим соображениям и когда требуется ослабление потока мощности СВЧ в 100-1000,экраны из сеток находят широкое применение. Форма экранирующего устройства может быть в виде:

Экранированной камеры (замкнутого экрана);

Незамкнутого экрана.

В качестве замкнутого экрана может быть рассмотрен металлический каркас шкафа передатчика. В период регулировки в случае необходимости наблюдения за режимом работы всей генераторной установки обшивку и

дверцы шкафа, выполненные из листового металла, можно временно заменять обшивкой и дверцами, выполненными из металлической сетки.

Экранированную камеру можно рекомендовать для отдельных производственных процессов в случае направленного излучения, когда интенсивность источника излучения слишком большая. В этом случае может оказаться необходимым экранирование двойной камерой из сетки или сплошным листовым металлом.

Размеры экранирующей камеры определяются размерами источника излучения и рабочего помещения, однако, минимально возможные размеры камеры обуславливаются в первую очередь значением излучаемой мощности.

С направленным излучением приходится встречаться, главным образом, при испытании комплекса РЛС, испытаниях антенных устройств, отработке элементов СВЧ тракта на устранение электрических пробоев и других работах.

Большинство работ, связанных с направленным облучением, относится к испытаниям и исследованиям антенных устройств (снятие диаграммы направленности, измерение частотных характеристик антенн). Несмотря на то, что эти исследования чаще всего производятся на невысоких уровнях мощности от измерительных генераторов (до 5Вт), интенсивность облучения может значительно превышать допустимые величины плотности потока мощности (ППМ).

В зависимости от характера работ могут быть применены различные формы незамкнутых экранов и материалы для их изготовления.

Форма, размер, материал замкнутого экрана по отношению к источнику излучения должны выбираться в каждом конкретном случае с таким расчетом, чтобы работающие в данном помещении не подвергались облучению с интенсивностью выше допустимой нормы.

Даются разъяснения по вредному действию СВЧ излучения их нормированию и методам определения. ЛАБОРАТОРНАЯ РАБОТА ЗАЩИТА ОТ СВЕРХВЫСОКОЧАСТОТНОГО ИЗЛУЧЕНИЯ Цель работы – ознакомиться с характеристиками электромагнитного излучения с принципом установления нормативных требований к электромагнитному излучению провести измерения электромагнитного излучения СВЧ диапазона в зависимости от расстояния до источника и оценить эффективность экранов из различных материалов. Спектр электромагнитных ЭМ колебаний находится в широких пределах по длине...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

КАМСКАЯ ГОСУДАРСТВЕННАЯ ИНЖЕНЕРНО-ЭКОНОМИЧЕСКАЯ АКАДЕМИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению лабораторной работы

по курсу «Безопасность жизнедеятельности»

Набережные Челны

2006


УДК

Защита от сверхвысокочастотного излучения: Методические указания к лабораторной работе по БЖД /Составители: И.М.Нуриев, Г.Ф.Юсупова. - Набережные Челны: КамПИ. 2004. – 15с.

Методические указания предназначены для студентов всех специальностей дневной и заочной формы обучения. Даются разъяснения по вредному действию СВЧ излучения, их нормированию и методам определения. Предлагается порядок проведения эксперимента и оформление полученных результатов.

Рецензент: д.т.н., профессор кафедры МиТЛП Н.Н.Сафронов .

Печатается по решению научно-методического совета Камского государственного политехнического института.


ЛАБОРАТОРНАЯ РАБОТА

ЗАЩИТА ОТ СВЕРХВЫСОКОЧАСТОТНОГО ИЗЛУЧЕНИЯ

Цель работы – ознакомиться с характеристиками электромагнитного излучения, с принципом установления нормативных требований к электромагнитному излучению, провести измерения электромагнитного излучения СВЧ диапазона в зависимости от расстояния до источника и оценить эффективность экранов из различных материалов.

1. ОБЩИЕ СВЕДЕНИЯ

Электромагнитные поля (ЭМП) генерируются токами, изменяющимися во времени. Спектр электромагнитных (ЭМ) колебаний находится в широких пределах по длине волны λ: от 1000 км до 0,001 мкм и менее, а по частоте  : от 3*10 2 до 3*10 20 Гц, включая радиоволны, оптические и ионизирующие излучения. В настоящее время наиболее широкое применение в различных отраслях находит ЭМ энергия неионизирующей части спектра. Это касается, прежде всего, ЭМ полей радиочастот. Они подразделяются по длине волны на ряд диапазонов (табл.1).

ЭМ поле складывается из электрического поля, обусловленного напряжением на токоведущих частях электроустановок, и магнитного, возникающего при прохождении тока по этим частям. Волны ЭМП распространяются на большие расстояния.

Таблица 1

Название диапазона

Длина волны

Диапазон частот

Частота

По международному регламенту

Название диапазона частот

Номер

Длинные волны (ДВ)

10 - 1 км

Высокие частоты (ВЧ)

3 - 300 кГц

Низкие (НЧ)

Средние волны (СВ)

1 – 0,1 км

То же

0,3 - 3 МГц

Средние (СЧ)

Короткие волны (КВ)

100 - 10 м

То же

3 - 30 МГц

Высокие (ВЧ)

Ультракороткие волны (УКВ)

10 - 1 м

Высокие частоты (УВЧ)

30 - 300 МГц

Очень высокие (ОВЧ)

Микроволны:

дециметровые (дм);

сантиметровые (см);

миллиметровые (мм);

100 - 10 см

10 - 1 мм

1 см - 1 мм

Сверхвысокие частоты (СВЧ)

0,3 - 3 ГГц

3 - 30 ГГц

30 - 300 ГГц

Ультравысокие (УВЧ) Сверхвысокие (СВЧ) Крайневысокие (КВЧ )

Таблица 2

Составляющая ЭМП, по которой оценивается его воздействие, и диапазон частот, МГц

Предельно допустимая напряженность ЭМП в течение рабочего дня

Электрическая составляющая:

0,06 – 3

3 – 30

30 – 50

50 – 300

50 В/м

20 В/м

10 В/м

0,5 В/м

Магнитная составляющая:

0,06 – 1,5

30 – 50

5,0 А/м

0,3 А/м

В промышленности источниками ЭМП являются электрические установки, работающее на переменном токе частотой от 10 до 10 6 Гц, приборы автоматики, электрические установки с промышленной частотой 50 - 60 Гц, установки высокочастотного нагрева (сушка древесины, склеивание и нагрев пластмасс и др.). В соответствий с ГОСТ 12.1.006-84 значения предельно допустимой напряженности ЭМП радиочастот в диапазоне 0,06 - 300 Мгц на рабочих местах приведены в табл.2.

Предельно допустимые уровни (ПДУ) по электрической составляющей, согласно , не должны превышать 20В/м, а по магнитной составляющей – 5А/м. ЭМП характеризуется совокупностью переменных электрических и магнитных составляющих. Различные диапазоны радиоволн объединяет общая физическая природа, но они существенно различаются по заключенной в них энергии, характеру распространения, поглощения, отражения, а вследствие этого, – по действию на среду, в т.ч. и на человека. Чем короче длина волны и больше частота колебаний, тем больше энергии несет в себе квант ЭМ излучения. Связь между энергией Е и частотой  колебаний определяется как:

Е = h ·  или, поскольку длина волны λ и частота связаны соотношением  = c /λ,

Е = h · c / λ,

где: с – скорость распространения электромагнитных волн в воздухе (с = 3*10 8 м/с), h – постоянная Планка, равная 6,62 * 10 -34 Вт/см 2 .

ЭМП вокруг любого источника излучения разделяют на 3 зоны: ближнюю – зону индукции, промежуточную – зону интерференции и дальнюю – волновую зону. Если геометрические размеры источника излучения меньше длины волны излучения λ (т.е. источник можно рассматривать как точечный), границы зон определяются следующими расстояниями R:

  • ближняя зона (индукции) формирования волны находится на расстоянии R < λ/2π;
  • промежуточная зона (интерференции) – наличия максимумов и минимумов находится на расстоянии λ/2π < R < 2πλ;
  • дальняя зона (волновая) – зона излучения находится на расстоянии R > 2πλ.

Работающие с источниками Излучения НЧ, СЧ и, в известной степени, ВЧ и ОВЧ диапазонов находятся в зоне индукции. При эксплуатации генераторов СВЧ и КВЧ диапазонов работающие часто находятся в волновой зоне.

В волновой зоне интенсивность поля оценивается величиной плотности потока энергии (ППЭ), т.е. количеством энергии, падающей на единицу площади поверхности. В этом случае ППЭ выражается в Вт/м 2 или производных единицах: мВт/см мкВт/см 2 . ЭМП по мере удаления от источника излучения быстро затухает. ЭМ волны диапазона УВЧ, СВЧ и КВЧ (микроволны) используются в радиолокации радиоастрономии, радиоспектроскопии, геодезии, дефектоскопии, физиотерапии. Иногда ЭМП УВЧ диапазона применяются для вулканизации резины, термической обработки, пищевых продуктов, стерилизации, пастеризации, вторичного разогрева пищевых продуктов. СВЧ – аппараты используются для микроволновой терапии.

Наиболее опасными для человека являются ЭМП высокой и сверхвысокой частот. Критерием оценки степени воздействия на человека ЭМП может служить количество электромагнитной энергии, поглощаемой им при пребывании в электрическом поле. Величина поглощаемой человеком: энергии зависит от квадрата силы тока, протекавшего, через его тело, времени пребывания в электрическом поле и проводимости тканей, человека.

По законам физики изменения в веществе может вызвать только та часть энергии излучения, которая поглощается этим веществом, а отраженная или проходящая через него энергия действия не оказывает. Электромагнитные волны лишь частично поглощаются тканями биологического объекта. Поэтому биологический эффект зависит от физических параметров ЭМП радиочастотного диапазона: длины волны (частоты колебаний), интенсивности и режима излучения, (непрерывный, прерывистый, импульсно-модулированный), продолжительности и характера облучения организма, а также от площади облучаемой поверхности, и анатомического строения органа или ткани.

Степень поглощения энергии тканями зависит от их способности к ее отражению на границе раздела, определяемой содержанием воды в тканях и другими их особенностями. Колебания дипольных молекул воды и ионов, содержащихся в тканях, приводят к преобразованию электромагнитной энергии внешнего поля в тепловую энергию, что сопровождается повышением температуры тела или локальным избирательным нагревом тканей, органов, клеток, особенно с плохой терморегуляцией (хрусталик глаза, стекловидное тело, семенники и др.). Тепловой эффект, зависит от интенсивности облучения. Пороговые интенсивности теплового действия ЭМП на организм животного составляют для диапазона средних частот – 8000 Вт/см 2 , высоких – 2250 Вт/см 2 , очень высоких – 150 Вт/см 2 , дециметровых – 40 мВт/см 2 , сантиметровых – 10 мВт/см 2 , миллиметровых – 7 мВт/см 2 .

ЭМП с меньшей интенсивностью не обладает термическим действием на организм, но вызывает слабовыраженные эффекты аналогичной направленности, что согласно ряду теорий считается специфическим нетепловым действием, т.е. переходом ЭМ энергии в объекте в какую-то форму нетепловой энергии. Нарушение гормонального равновесия при наличии СВЧ - фона на производстве следует рассматривать как противопоказания для профессиональной деятельности, связанной с нервной напряженностью труда и частыми стрессовыми ситуациями.

Постоянные изменения в крови наблюдаются при ППЭ выше 1 мВт/см 2 . Это фазовые изменения лейкоцитов, эритроцитов и гемоглобина. Поражение глаз в виде помутнения хрусталика (катаракты) – последствия воздействия ЭМП в условиях производства. При воздействии миллиметровых волн изменения наступают немедленно, но быстро проходят. В то же время при частотах около 35 ГГц возникают устойчивые изменения, являющиеся результатом повреждения эпителия роговицы.

Клинические исследования людей, подвергшихся производственному воздействия СВЧ облучения при его интенсивности ниже 10 мВт/см 2 , показали отсутствие каких-либо проявлений катаракты.

Воздействие ЭМП с уровнями, превышающими допустимые, приводит к изменениям функционального состояния сердечно-сосудистой и центральной нервной систем, нарушению обменных процессов . При воздействии значительных интенсивностей СВЧ поля может возникать более или менее выраженное помутнение хрусталика глаза (катаракты). Нередко отмечают изменения и в составе крови.

В соответствии с санитарными нормами и правилами при работе с источниками ЭМП СВЧ частот предельно допустимые интенсивности ЭМП на рабочих местах приведенные в табл. 3.

Таблица 3

В диапазоне СВЧ (300 МГц - 300 ГГц)

Предельно допустимая интенсивность

1. Для работающих при облучении и течение:

1) всего рабочего дня

2) не более 2 ч за рабочий, день

3) не более 15-20 мин за рабочий день

10 мкВт/см 2

100 мкВт/см 2

1000 мкВт/см 2

2. Для лиц не связанных профессионально, и для населения

1 мкВт/см 2

Защитные меры от действия ЭМП сводятся, в основном, уменьшению излучения в источнике, изменению направленности излучения, уменьшению времени воздействия, увеличению расстояния до источника излучения, к применению защитного экранирования, дистанционного управления устройствами, излучающими ЭМ волны; применению средств индивидуальной защиты. Защитные экраны делятся на:

1) отражающие излучение;

2) поглощающие излучение.

К первому типу относятся сплошные металлические экраны, экраны из металлической сетки, из металлизированной ткани. Ко второму типу относятся экраны из радиопоглощающих материалов. К средствам индивидуальной защиты (СИЗ) относятся: спецодежда, выполненная из металлизированной ткани: защитные халаты, фартуки, накидки с капюшоном, перчатки, щитки, а также защитные очки (при интенсивности выше 1 мВт/см 2 ), стекла которых покрыты слоем полупроводниковой окиси олова, иди сетчатые очки в виде полумасок из медной или латунной сетки.


2. СОДЕРЖАНИЕ РАБОТЫ

2.1. ОПИСАНИЕ СТЕНДА

Внешний вид стенда представлен па рис.1 . Стенд представляет собой стол, выполненный в виде сварного каркаса со столешницей 1, под которой размещаются сменные экраны 2, используемые для изучения экранирующих свойств различных материалов. На столешнице 1 размещены СВЧ печь 3 (источник излучения ЭМ колебаний с = 2,45 ГГц, длиной волны = 12,5 см) и координатное устройство 4.

Координатное устройство 4 регистрирует перемещение датчика 5 СВЧ поля по осям «X», «Y». Координата «Z» определяется по шкале, нанесенной на измерительную стоику 6, но которой датчик 5 может свободно перемещаться. Это дает возможность исследовать распределение СВЧ излучения в пространстве со стороны передней панели СВЧ печи (элементы наиболее интенсивного излучения).

Датчик 5 выполнен в виде полуволнового вибратора, рассчитанного на частоту 2,45 ГГц и состоящего из диэлектрического корпуса, вибраторов и СВЧ диода.

Координатное устройство 4 выполнено в виде планшета, на который нанесена координатная сетка. Планшет приклеен непосредственно к столешнице 1. Стойка 6 изготовлена из диэлектрического материала (органического стекла), чтобы исключить искажение распределения СВЧ поля.

В качестве нагрузки в СВЧ печи используется строительный красный кирпич, устанавливаемый на неподвижную подставку, в качестве которой используется неглубокая фаянсовая тарелка, обеспечивающая стабильность измеряемого сигнала.

Сигнал с датчика 5 поступает на мультиметр 7, размещенный на свободной части столешницы 1 (за пределами координатной сетки).

На столешнице 1 имеются гнезда для установки сменных защитных экранов 2, выполненных из следующих материалов:

сетка из оцинкованной стали с ячейками 50 мм;

сетка из оцинкованной стали с ячейками 10 мм;

лист алюминиевый;

полистирол;

резина.

Рис.1


2.2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СТЕНДА

2.2.1 Диапазон плотности потока электромагнитного излучения в изучаемой зоне СВЧ печи, мкВт/см 2 0...120.

2.2.2 Соотношение показаний мультиметра М3900 и измерителя плотности потока ПЗ-19:

1 мкА = 0,35 мкВт/см 2 .

2.2.3 Значения перемещении датчика относительно СВЧ печи, мм, не менее:

по оси "X" 500

по оси " Y " ±250

по оси " Z " 300

2.2.4 Мощность СВЧ печи, Вт, не более 800

2.2.5 Количество сменных защитных экранов 5

2.2.6 Размеры экранов, мм (330 ± 5) х (500 ±5)

2.2.7 Потребляемая мощность, В А, не более: 1200

2.2.8 Цена деления шкал по осям X, Y, Z, мм 10 ± 1

2.2.9 Габаритные размеры стенда, мм, не более:

длина 1200

ширина 650

высота 1200

2.2.10 Масса стенда, кг, не более 40

2.2.11 Электропитание стенда должно осуществляться от сети переменного тока

напряжением, В 220 ± 22

частотой, Гц 50 ± 0,4

2.2.12 Режим работы СВЧ печи:

Продолжительность работы, мин, не более 5

  • продолжительность перерыва между

рабочими циклами, с, не менее 30

Уровень мощности, 100%

2.3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПРИ ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

2.3.1. К работе допускаются студенты, ознакомленные с устройством лабораторного стенда, принципом действия и мерами безопасности при проведении лабораторной работы.

2.3.2. Включать установку только с разрешения преподавателя.

2.3.4. Запрещается самостоятельно регулировать или ремонтировать дверь, панель управления, выключатели системы блокировки или какие-либо другие части печи. Ремонт должен производиться только специалистами.

2.3.5. СВЧ печь должна быть заземлена.

2.3.6. Не допускается, включение и работа печи без нагрузки. Рекомендуется в перерывах между рабочими циклами оставлять в печи кирпич. При случайном включении печи кирпич будет выполнять роль нагрузки.

2.3.7. Приборы лабораторной установки держать под напряжением только при проведении эксперимента.


3. ПОРЯДОК ПРОВЕДЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

3.1. Ознакомиться с мерами по технике безопасности при проведении лабораторной работы и строго выполнять их.

3.2. Подключить СВЧ печь к сети переменного тока.

3.3. В печь на подставку (перевернутая тарелка) положить кирпич.

3.4. Установить режим работы печи согласно п.2.2.12. в соответствии с паспортом на конкретную СВЧ печь.

Для СВЧ печи «Плутон» ее включение в рабочий режим осуществляется в следующей последовательности: открыть дверцу нажатием прямоугольной клавиши в нижней части лицевой панели; установить ручку «мощность» в крайнее правое положение; установить ручку «время» в положение 5 мин; плотно закрыть дверцу.

3.5. Разместить датчик на отметке 0 по оси Х координатной системы.

Перемещая датчик по оси У координатной системы и оси Z (по стойке), определить зоны наиболее интенсивного излучения и с помощью, мультиметра зафиксировать их численные значения. Перемещая стойку с датчиком по координате Х (удаляя его от печи до предельной отметки 50 см) снять показания мультиметра дискретно с шагом 20 мм. Данные замеров занести в табл.4. Построить график распределения интенсивности излучения в пространстве перед печью.

3.6. Разместить датчик на отметке 0 по оси X. Зафиксировать показания мультиметра.

3.7. Поочередно устанавливать защитные экраны и фиксировать показания мультиметра.

3.8. Определить эффективность экранирования для каждого экрана по формуле:

(1)

где I – показание мультиметра без экрана;

I э – показание мультиметра с экраном.

3.9. Построить диаграмму эффективности экранирования от вида материала защитных экранов.

3.10. Составить отчет о работе.

4. ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ

4.1. Общие сведения

4.2. Схема стенда

4.3. Данные измерений (табл. 4 и 5)

Таблица 4

Номер измерения

Значение Х, см

Значение Y , см

Значение Z, см

Интенсивность излучения (показания мультиметра)

. . .

Таблица 5

Номера защитных экранов

Эффективность экранирования, δ

4.4. Графики распределения интенсивности излучения в пространстве и диаграмма эффективности экранирования от вида материала защитных экранов.

Контрольные вопросы

  1. Что в техносфере является источником ЭМП?
  2. Какими характеристиками оценивается величина электромагнитного поля?
  3. Как ЭМП воздействует на организм человека?
  4. По какому принципу нормируется ЭМП промышленной частоты?
  5. По какому принципу нормируется ЭМП радиочастотного диапазона?
  6. Влияют ли на людей излучения радиолокационных станций?
  7. Какие существуют способы защиты человека от высоких уровней ЭМП?
  8. Каков физический принцип действия и как оценивается эффективность экранирования ЭМП?
  9. Какие ныне существуют гигиенические предельные нормативы допустимых уровней воздействия ЭМП на человека при профессиональном и непрофессиональном воздействии?

литературА

  1. Охрана труда. Г.Ф. Денисенко, - М.: Высшая школа, 1985. –319с.
  2. Охрана труда в химической промышленности. Г.В.Макаров. - М.: Химия, 1989. – 496с.
  3. Справочник по технике безопасности. П.А. Долин, - М.: Энергоатомиздат, 1984.
  4. Техника безопасности в электроэнергетических установках. Справочное пособие П.А. Долин. – М.: 1987.
  5. Безопасность жизнедеятельности. /Под ред. С.В. Белова - М.: Высшая школа, 2005. –606с.
  6. ГН 2.1.8./2.2.4.019-94. Временные допустимые уровни (ВДУ) воздействия ЭМИ, создаваемых системой сотовой связи.
  7. ГОСТ 12.1.002-84. Система стандартов безопасности труда. Электрические поля промышленной частоты. Допустимые уровни напряженности и требования к проведению контроля на рабочих местах.
  8. ГОСТ 12.1.006-84. Электромагнитные поля радиочастот. Общие требования.
  9. ГОСТ 12.1.045-84. Система стандартов безопасности труда. Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля.
  10. Влияние электромагнитного излучения на жизнедеятельность человека и способы зашиты от него. Учебное пособие. С.Г. Захаров, Т.Т. Каверзнева. – СПГТУ; 1992, -74с.
  11. Охрана труда в радио и электронной промышленности. Под редакцией С.Ш.Павлова. - М.: Энергия; 1986.
  12. СанПИН 2.2.4/2.1.8.055 - 96;
  13. Инфракрасное излучение ГОСТ 12.1.005 98, СанПиН 2.2.4.518 96;
  14. Ультрафиолетовое излучение СН 1557 - 88;
  15. Лазерное излучение СН 5801 - 91;
  16. СанПиН 2.2.4.1191-03 Электромагнитные поля в производственных условиях.

Другие похожие работы, которые могут вас заинтересовать.вшм>

421. ЗАЩИТА ОТ ТЕПЛОВОГО ИЗЛУЧЕНИЯ 27.58 KB
Даются разъяснения по вредному воздействию теплового излучения их нормированию и методам определения. Лабораторная работа Защита от теплового излучения Цель работы – практическое ознакомление с теорией теплового инфракрасного излучения физической сущностью и инженерным расчетом теплоизоляции; с приборами для измерения тепловых потоков нормативными требованиями к тепловому излучению провести измерения интенсивности тепловых излучений в зависимости от расстояния до источника; ознакомление действием теплового излучения на человека; ...
697. Радиоактивные излучения 78.24 KB
Биологическое действие ионизирующих излучений Под воздействием ионизирующего излучения на организм человека в тканях могут происходить сложные физические и биологические процессы. Эквивалентная доза представляет собой меру биологического действия на данного конкретного человека. ИРФ создается рассеянными в биосфере искусственными радионуклидами образованными в процессе деятельности человека.
531. Воздействие ионизирующего излучения 5.75 KB
В отсутствии лечения в 20 случаев возможен смертельный исход смерть наступает через 2 – 6 недель после облучения. Дозовые пределы облучения различны для следующих групп людей: персонал то есть лица работающие с техногенными источниками или находящиеся по условиям работы в сфере их воздействия; все население включая лиц из персонала вне сферы и условий их производственной деятельности. Помимо дозовых пределов облучения установлены допустимые уровни мощности дозы при внешнем облучении всего тела от техногенных источников а также...
530. Воздействие электромагнитного излучения 4.96 KB
Инфракрасное излучение это часть электромагнитного спектра с наибольшей длиной волны. Инфракрасное излучение воздействует на обменные процессы в миокарде на водноэлектролитный баланс в организме и на состояние верхних дыхательных путей. Световое или видимое излучение это промежуточный диапазон электромагнитных колебаний. Излучение видимого диапазона при достаточных уровнях энергии также может представлять опасность для кожных покровов и органа зрения.
13093. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ 326.77 KB
Поглощение излучения средой.Эйнштейном при построении теории излучения. Напомним читателю что законы Кирхгофа СтефанаБольцмана и Вина а также закон РелеяДжинса в области малых частот излучения для поведения объёмной спектральной плотности излучения “абсолютно черного†тела ρν [ρν] = Джсм3с удавалось объяснить используя аппарат и законы термодинамики.
8259. ПРИНЦИП РАБОТЫ ЛАЗЕРА И СВОЙСТВА ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 75.97 KB
Для них существует вероятность 21 спонтанных переходов в нижнее состояние Е1 с испусканием фотонов обладающих энергией hv: 2 Также существует вероятность B21U вынужденных переходов с испусканием фотонов в присутствии излучения с плотностью энергии U: 3 Коэффициенты Эйнштейна для спонтанных 21 и вынужденных переходов В12 B21 взаимосвязаны: 4 где с скорость света в среде; g1 и g2 степень вырождения соответствующих энергетических уровней. Очевидно что h и следовательно S=h...
20350. БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ ВОЗДЕЙСТВИЯ НИЗКОИНТЕНСИВНОГО ИЗЛУЧЕНИЯ НА ВОДНЫЕ РАСВОРЫ 728.75 KB
В ходе выполнения работы были получены ИК – спектры и спектры флюоресценции водных растворов ДНК, и проанализировано изменение интенсивности адсорбции под действием комбинированных магнитных полей слабой частоты. Установлено, что у молекул ДНК также как и у аминокислот есть резонансная ионно-циклотронная частота.
1767. ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ СВОЙСТВ ПРЕОБРАЗОВАТЕЛЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ 1.05 MB
Так же в связи с возникшими сложностями при попытках нагревания кристалла было произведено изучение возможностей прибора для нагревания кристаллов собранного на базе ПИДрегулятора ОВЕН ТРМ101 и произведена настройка прибора написана инструкция по пользованию им для возможности его использования студентами в дальнейшем. Тепловая расстройка тепловой синхронизм В процессе генерации второй гармоники в нелинейном кристалле происходит некоторое поглощение энергии основного излучения и второй гармоники и как следствие нагрев...
11905. 17.79 KB
Разработан светосильный рентгеновский спектрометр для проведения рентгеновской спектроскопии и для изучения излучательных характеристик плазменных источников. Это дает возможность использовать спектрометр для диагностики и мониторинга излучения плазмы в установках для проекционной ВУФ нанолитографии а также на мощных плазменных установках: Zпинчей плазменного фокуса и лазерной плазмы для инерционного термоядерного синтеза. Потенциальными потребителями проектной продукции являются: производители источников для литографических машин; ...
2145. ЗАЩИТА И АВТОМАТИКА ЛЭП 1.05 MB
Выбор тока срабатывания и определение длины защищаемой зоны токовой отсечки без выдержки времени: а неполная защиты всей длины участка радиальной линии; б полная защиты всей длины участка радиальной линии Выбор тока срабатывания токовой отсечки радиальной линии. Отсечка сработает когда ток проходящий по защищаемой линии АБ больше или равен току срабатывания защиты т. Это условие выполняется при коротком замыкании в пределах участка в максимальном режиме или участка в минимальном режиме защищаемой линии.б с помощью токовой...

Микроволновые печи давно поселились на наших кухнях, но о принципе их работы особо и не думал никто. Зато до сих пор не утихают споры о том, безопасен ли этот прибор для человека или все-таки – нет. Мы решили развенчать все мифы и доказать, что микроволновкам на кухне быть!

Чтобы вы понимали, микроволновки работают на частоте, соразмерной частоте смартфона . Подобные волны задействованы в радиолокации, в спутниковой навигации, даже Солнце излучает определенную долю микроволн.

Само по себе микроволновое излучение опасно для здоровья . Представьте, если бы на вас воздействовали несколько тысяч мобильников, вай-фай роутеров или более десятка вышек сотовой связи. Я говорю о волнах, с которыми есть контакт. По сути, один мощный магнетрон может сварить внутренности человека и взорвать любой продукт в случае длительного воздействия.

Хорошая новость в том, что производители решают этот вопрос, используя технические и конструктивные разработки. Сегодня даже недорогие печи не несут никакого вреда и за них можно голосовать рублем. Именно поэтому вред современной микроволновой печи – это миф .

Как это работает

Все приборы – дешевые и дорогие – работают одинаково. По сути, это металлическая коробка, внутри которой трудится магнетрон, излучающий короткие волны. Если не вдаваться в тонкости, кинетическая энергия преобразуется в тепловую, благодаря чему нагревается еда.

Микроволны способны проникать в пищу на глубину 1.5 см, не более . Весь остальной слой нагревается благодаря естественной теплопроводности. Этот принцип действует абсолютно во всех моделях, поэтому нельзя говорить о том, что какие-то из них безопасней других.

Другое дело – качество сборки. Именно изоляция камеры не дает микроволнам выходить наружу. Сегодня все производители обязаны оснащать печи защитными механизмами и сертифицировать машины на предмет безопасности.

Для бытовых приборов есть два стандарта, нормирующих безопасное излучение:

  • наш, российский – по нему уровень плотности микроволн не должен превышать 5.0 мВт*см2 на расстоянии полуметра от печи;
  • забугорный, американский (ANSI) считает нормой плотность 10 мВт*см2.

Такая существенная разница вызвана тем, что наш стандарт разрабатывался медиками с опорой на главное – здоровье людей. ANSI – труд производителей, которые стремятся к удешевлению продукции. Непоправимый вред несет излучение от 60 мВт/м2 , и именно поэтому в каждой микроволновке есть многоуровневая защита.

Качество сборки и конструктив

Это, так сказать, базовая ступенька защиты. Если техника не проработана конструктивно, она может пропускать волну. Дело в том, что в любой модели вы найдете вентиляционные отверстия. Все они могут считаться источником утечки, если их геометрические размеры больше, чем длина волны .

Исходя из этого, отверстия должны быть выполнены в виде небольших щелей, расположенных вдоль линии протекания тока в камере. Справедливости ради скажу, что все производители соблюдают этот момент, поэтому в печах даже около вентиляции происходит эффект экранировки, – ни у одной волны нет шанса проникнуть наружу .

Дверца

Дверцы микроволновок считаются потенциальным источником утечки, что усугубляется близким расположением пользователя.

Именно поэтому к их конструкции предъявляются усиленные требования:

  • удобство наблюдения за приготовлением, легкий доступ к блюду и защита при открытой дверце;
  • сильная экранировка и недопущение утечки.

Вред можно получить, открыв прибор во время работы, поэтому первый вопрос решается особой конструкцией запорной системы. Производители применяют три, а то и четыре защитных и блокирующих выключателя . С их помощью магнетрон запускается только в момент замыкания контактов (после закрывания дверцы). Типы переключателей могут быть разными, например, защитный Monitor Switch, Door Switch – дверной, Primary/Secondary Switch – первичный/вторичный.

Если говорить о выборе, дальше всех пошли корейцы. В микроволновых печах Samsung реализовано множество технологий, но особенно удачной получилась модель MC32F604TCT. Этот зверь оснащен откидной дверцей, как у традиционного духового шкафа, есть 4 защитных выключателя , биокерамическое покрытие, целый ряд удобств для приготовления разнообразных блюд.

Если вы следуете главному тренду 2017 года – ЗОЖ, корейцы выручат и тут. Модель MW3500 K абсолютно безопасна и позволяет готовить на аэрогриле, что делает блюда без масла очень полезными для здоровья. Более того, вам в помощь залито множество авторецептов, а это снимает лишнюю головную боль в повседневном цейтноте.

Экранирование

Для обеспечения экранировки используется хитрая многорамочная конструкция двери. Смотровое оконце всегда перекрывается металлическим перфорированным листом. Каждое отверстие листа работает как диафрагма и препятствует утечке. Волны отражаются, возвращаются в камеру и просто физически не могут выйти наружу. При выборе проверьте, чтобы диаметр дырочек не превышал 2.3 мм .

Также должна быть обеспечена защита по контуру, так как между шасси прибора и дверцей есть щели. Проблема в том, что они могут увеличиваться в процессе эксплуатации. Тут важен зазор между уплотнителем и камерой, – прилегание должно быть плотным.

Хорошее экранирование есть у любой микроволновой печи, иначе бы она не поступила в продажу . Если вы ищите соло, планируя использовать его для разогрева и разморозки, обратите внимание на модель LG MS-2042 DB . За небольшие деньги вы получите хороший полезный объем на 20 л, оптимальную мощность, электронное управление. Конечно, излишеств и дополнительных опций тут нет.

Большие возможности можно поискать у немцев. Например, машина Bosch BFL634 GS1 может быть встроена в мебельный профиль, есть 7 автоматических программ. Внутри трудится инверторный мотор. Завершает этот бум технологий умное сенсорное управление и яркий дисплей.

Дополнительно отмечу линейку, особо полюбившуюся профессионалам. Это микроволновые печи Electrolux в стиле Rococo . Как говорят шведы, готовка – искусство, а вы – художник. Но, если оставить лирику серия получилась действительно удачной: тут реализован удачный внешний вид и передовые технологии. Например, в модели Electrolux EMM20000OC можно готовить хоть жаркое, хоть шоколадный фондан.

Выводы

Микроволновая печь – абсолютно безвредный прибор, не хуже простого смартфона. Даже еда вопреки проискам конкурентов не утрачивает своей пищевой ценности, попав под гнет микроволн. Сегодня можно спокойно выбирать бюджетные и дорогие модели, главное, чтобы внутри была защитная запорная система, экран и хорошая сборка .