Часы для определения местоположения корабля. Как корабли находят дорогу в море. Астрономия на морской службе
В рулевой рубке каждого торгового судна установлено разнообразное навигационное оборудование, приборы, устройства и инструменты, при помощи которых капитан и штурмана обеспечивают безопасное управление судном.
Навигационное оборудование - это судовые технические средства, которыми укомплектовано судно для решения задач навигации.
Навигация - процесс принятия решения и управления курсом и скоростью судна при движении из одного пункта в другой, с учетом окружающих условий и интенсивности судоходства.
Навигационное устройство - это судовое техническое средство, предназначенное для решения одной или нескольких задач навигации.
Навигационный инструмент - это судовой навигационный прибор, предназначенный для выполнения работ вручную при решении задач навигации.
Навигационный прибор - это прибор, предназначенный для выполнения отдельных функций по измерению навигационных параметров, обработке, хранению, передаче, отображению и регистрации данных при решении задач навигации на судне.
Для лучшего просмотра все фото кликабельны.
Судовые часы. По судовым часам фиксируется время всех событий. Судовые часы должны ежедневно сверяться по сигналам точного времени и должны иметь точность не боле одной минуты. Все судовые часы должны быть выставлены по одному часовому поясу. Одни судовые часы должны быть выставлены по Гринвичскому времени или Всемирному координированному времени (Coordinated Universal Time – UTC).
Магнитный компас (Magnetic compass) . Самый надежный и незаменимый прибор. Если конечно он исправен и регулярно проверяется в береговой мастерской. По крайней мере раз в два года у магнитного компаса должна под уничтожается девиация, определяться остаточная девиация и составляться таблица девиации (Deviation card). На некоторых судах устанавливают главный магнитный компас и путевой. Если на судне установлен только один компас, то как правило должен иметься один запасной компас. Магнитный компас является запасным источником курсоуказания для авторулевого и ECDIS. Отдельная статья о магнитном компасе находится . В спасательных и дежурных шлюпках обязательно должны быть магнитные компасы для курсоуказания.
Гирокомпас (Gyro compass ). Гирокомпас. Основной источник курсоуказания. Курсоуказание от гирокомпаса поступает на радиолокаторы, АРПА, ЭКНИС, авторулевой, цифровой индикатор курса, репитеры гирокомпаса в рулевой рубке, штурманской рубке, крыльях мостика, румпельном отделении.
Репитер гирокомпаса с (Gyro repeater with taking bearing device). Устанавливаются на крыльях мостика и служат для взятия визуальных пеленгов. Пеленга маяков и знаков берутся для определения места судна в море в вблизи берегов. Пеленга небесных светил берутся для определения поправки компасов. Пеленга на приближающиеся суда берутся для определения наличия опасности столкновения с ними. На фото изображен простой пеленгатор. Бывают также оптические пеленгаторы, в которых установлены линзы для приближения пеленгуемых объектов.
Цифровой индикатор курса (Transmitting heading device). Устройство цифрового отображения курса судна. Обязательное устройство.
Бинокль (Binocular ). Служит для распознания объектов находящихся на некотором расстоянии от судна и плохо различимых невооруженным глазом. Также используется для наблюдения в соответствии с правилом 5 МППСС-72.
Радиолокатор (Radar ). Радиолокатор служит для предупреждения столкновения с другими судами и для навигационных целей – определения места судна по пеленгам и дистанциям береговых ориентиров, измеренных при помощи радиолокатора. Служит для наблюдения за окружающей обстановкой в соответствии с правилом 5 МППСС-72.
АРПА (ARPA ). Устройство для предупреждения столкновения с другими судами и плавучими объектами. Служит для наблюдения за окружающей обстановкой в соответствии с правилом 5 МППСС-72. В большинстве современных радиолокаторов реализована функция АРПА и поэтому в виде отдельного прибора АРПА практически не встречается.
Электронно-картографическая навигационно-информационная система – ЭКНИС (Electronic Chart Display and Information System ECDIS ). Устройства электронной картографии служат для отображения навигационной карты, навигационной информации и местоположение судна по координатам приемника GPS на дисплеях. На многих судах установлены два комплекта оборудования ЭКНИС и бумажные навигационные карты отсутствуют.
Приемник спутниковой навигации (Global Positioning System – GPS). Служат для определения координат судна при помощи глобальной спутниковой системы. Отображает скорость судна относительно грунта. Пройденное расстояние. Служит для введения координат путевых точек маршрута перехода, составления маршрута перехода, передачи маршрута перехода на радиолокатор. Показывает направление и расстояние до путевых точек, отклонение от маршрута, время прихода в путевые точки.
Эхолот (Echo sounder ). Устройство для измерения глубины под килем судна.
Лаг (Speed and distance Log). Устройство служит для измерения скорости судна и пройденного судном расстояния. Измеряет скорость судна как относительно воды, так и относительно грунта. Скорость относительно воды необходима для передачи в радиолокатор и АРПА для решения задач по расхождению с другими судами.
Автоматическая идентификационная система (Automatic Identification System – AIS ). Служит для приема и передачи данных судна при помощи приемопередатчика УКВ. Отображает данные полученные от других судов на дисплее устройства и передает их на радиолокатор и ЭКНИС. Служит для наблюдения за окружающей обстановкой в соответствии с правилом 5 МППСС-72.
Панель навигационных огней (Navigation Lights ). Каждое судно должно выставлять огни в соответствии с правилами МППСС-72. На панели навигационных огней предусмотрена световая и звуковая предупредительная сигнализация в случае если какой-либо огонь погаснет.
Судовой свисток Ship ’ s whistle ). Судовой свисток служит для подачи предупредительных и туманных сигналов в соответствии с правилами МППСС-72.
Устройство для подачи туманных сигналов судна (Automatic fog signal device ). Для подачи туманных сигналов в автоматическом режиме.
Система контроля дееспособности вахтенного помощника (Bridge Navigational Watch Alarm System – BNWAS . Служит для подачи звукового сигнала в случае недееспособности вахтенного помощника капитана. Должна быть включена во все время после отхода судна от причала и до швартовки у причала.
Авторулевой (Autopilot ). Служит для удержания судна на курсе в автоматическом режиме. Если в устройстве имеется режим удержания судна на линии пути, то в этом авторулевой будет сам изменять курс судна, чтобы привести его в следующую путевую точку. При подходе к путевой точке на заданное расстояние устройство подаст звуковой сигнал, если вахтенный помощник нажмет кнопку подтверждения, то устройство переложит руль и выведет судно на следующий заданный курс.
Регистратор данных рейса – VDR – Voyage Data Recorder . Черный ящик судна. Устройство регистрации данных навигационных приборов и устройств.
Приемник НАВТЕКС – NAVTEX receiver . Служит для приема различных предупреждений в автоматическом режиме: навигационных, метеорологических, бедствия и других.
Терминал Инмарсат – С (Inmarsat – C ). Служит для приема и отправки сообщений через систему спутниковой связи.
Система дальней идентификации и контроля местоположения судов – ОСДР (Long Range Identification and Tracking System – LRIT ). Служит для передачи данных судна (координаты, курс, скорость, идентификатор судна) в автоматическом режиме через систему спутниковой связи.
Аксиометр перекладки руля (Rudder Angle Indicator ). Устройство показывающее направление и угол перекладки руля.
Указатель угловой скорости поворота (Rate of turn indicator ). Показывает угловую скорость поворота судна.
Устройство приема и воспроизведения звук (Sound Reception System ). Устройство служит для воспроизведения наружных звуков в закрытых мостиках.
Секстан (Sextant ). Секстан (Секстант) навигационный применяется для измерения высот небесных светил, которые используются для расчета линий положения и определения места судна астрономическими способами. Также им измеряют высоты береговых и плавучих навигационных знаков, и других объектов. Кроме этого, истинные штурмана-навигаторы, навигационным секстаном измеряют горизонтальные углы между тремя навигационными знаками и по двум горизонтальным углам определяют местоположение судна в море. Но так определяют место судна только очень истовые навигаторы, к сожалению большинство современных штурманов можно отнести к «GPS-навигаторам», то есть к тем, кто кроме как по GPS-у определить положение судна в море уже не в состоянии. Профессиональная деградация однако. О навигационном секстане отдельная статья
Хронометр (Chronometer ). Показывает время на Гринвичском меридиане. До изобретения радио хронометр являлся единственным источником точного времени на судне. От точности хронометра и знании его суточного хода, зависела точность определения места парусного судна в море. Хронометры выверялись астрономами в обсерваториях, с максимально возможной точностью определялся их суточный ход и перед отплытием судна в море они с величайшей осторожностью доставлялись на борт. После длительного океанского плавания, при первой же возможности хронометры свозились на берег для их проверки и определения суточного хода. На каждом судне имелось несколько хронометров. С появлением радиоприемников появилась возможность принимать радиосигналы точного времени для определения суточного хода хронометров и требования к их точности несколько снизились. С появлением спутниковых средств навигации и значительного ослабления роли астрономических наблюдений в навигации, хронометры почти на всех торговых судах заменили на точные часы. Однако до сих пор отдельные точные часы используемые для хранения времени называют хронометрами. Штурман отвечающий за навигационные приборы обязан вести журнал хронометра в который записывать суточный ход хронометра.
Секундомер механический (Stopwatch). Служит для фиксирования времени в момент астрономических и навигационных наблюдений, для определения поправки хронометра, для сличения и установки судовых часов. Для определения характеристики огней маяков и других навигационных знаков и буёв. Используется для определения периода бортовой и килевой качки судна и периода волны.
Звездный глобус (Star Globe ). Используется для решения задач мореходной астрономии. Более подробно об устройстве звездного глобуса можно прочесть
Ручной Анемометр (Wind anemometer ). Служит для измерения скорости ветра.
Автоматическое устройство измерения скорости и направления ветра (Wind speed and direction indicator ). Служит для измерения направления и скорости ветра в автоматическом режиме.
Судовой гонг Ship ’ s gong ). Служит для подачи туманных сигналов в соответствии с правилами МППСС-72. Обязателен для всех судов, длиной 100 метров и более. Гонг представляет из себя латунный диск с бортиком. В него в ручную ударяют билом, которое представляет из себя рукоятку с шарообразной ударной частью на конце.
Сигнальные флаги – МСС (ICS ). Флаги служат для подачи сигналов в соответствии с Международным Сводом Сигналов – МСС (International Code of Signal – ICS).
Сигнальные фигуры – шары, цилиндр, ромб (Signaling Shapes ). Служат для выставления сигналов в соответствии с правилами МППСС-72.
Штурманский стол для карт (Chart table). Установлен в святая-святых для каждого штурмана – в штурманской рубке. На нем в море раскладывается навигационная карта с выполненной предварительной прокладкой, на ней же ведется исполнительная прокладка с обсервациями места судна. В выдвижных ящиках стола хранятся навигационные карты. В боковых рундуках могут храниться навигационные инструменты.
Грузики для карт. Служат для удержания навигационной карты на штурманском столе во время качки судна. Как правило изготавливаются из резины. В качестве утяжелителя, внутри грузика находится свинец. Более подробно о применении грузиков можно ознакомиться в статье « ».
Лупа штурманская (magnifier). Служит для увеличения трудно различимых изображений на навигационной карте.
Штурманская параллельная линейка (Navigational ruler ).
Штурманский транспортир (Protractor ). Служит для прокладки, определения места судна и других штурманских задач на навигационной карте.
Штурманский измеритель (Navigational divider ). Служит для прокладки, определения места судна и других штурманских задач на навигационной карте. Измерители изготавливаются из латуни или хромированной стали. Они бывают различного вида и размеров.
Штурманский циркуль. Как правило, для штурманских целей используется обычные чертежные циркули разных размеров и типов, главное, чтобы они были удобны в работе на навигационной карте и не наносили карте значительных повреждений.
Протрактор навигационный.
Навигационный инструмент, который служит для определения места судна по двум горизонтальным углам.
Порядок определения места судна по двум горизонтальным углам .
Кренометр (inclinometer). Служит для определения угла крена судна.
Барометр (Barometer ). Служит для определения атмосферного давления.
Барограф (Barograph ). Служит для определения атмосферного давления и наблюдения за его изменением. Показание барометра записывается на бумажной ленте.
Термометр (Thermometer ). Служит для измерения температуры окружающего воздуха.
Гигрометр (Hygrometer ). Служит для измерения влажности окружающего воздуха.
Компьютер с подключенным спутниковым интернетом. Служит для приема карт погоды и планирования безопасного маршрута с учетом прогнозов погоды. Также служит для передачи и приема оперативной информации для обеспечения безопасной эксплуатации судна.
В зависимости от специального назначения на мостике устанавливаются специальные приборы и устройства, и вахтенный помощник использует их для решения специальных задач.
GPS
астролябия
рейка, квадрант и секстан
линям
Помощники мореплавателей
Самое главное для любого судна — это знать свое точное местоположение в море. В любой момент времени. От этого зависит безопасность самого судна, груза так и всего экипажа. Я не открою Америку, если скажу, что в настоящее время судном управляет компьютер. Человек лишь контролирует этот процесс. В этой статье я расскажу о помощниках мореплавателей — о спутниковых навигационных системах, помогающие судам получать точные координаты своего местоположения. Также поведаю, какими приборами пользовались древние мореплаватели. Сейчас на всех судах установлены приемники GPS — global positioning system. Облетая нашу планету, навигационные спутники непрерывно шлют на нее потоки радиосигналов. Эти спутники принадлежат американской военно-морской навигационной спутниковой системе (ВМНСС), а с недавнего времени и американской глобальной системе нахождения местоположения (ГСМ или GPS
). Обе системы дают возможность кораблям на море днем и ночью с огромной точностью определять свои координаты. Практически до метра.
Принцип действия и ВМНСС и ГСМ основан на том, что на борту корабля специальный GPS-приемник ловит радиоволны, посылаемые навигационными спутниками на определенных частотах. Сигналы с приемника непрерывно поступают в компьютер. Компьютер их обрабатывает, дополняя информацией о времени передачи каждого сигнала и положения навигационного спутника на орбите. (Такая информация попадает на ВМНСС- спутники от наземных станций слежения, а ГСМ-спутники у себя на борту имеют приборы отсчета времени и орбиты). Затем навигационный компьютер на корабле определяет расстояние между ними и летящим в небесах спутником. Эти вычисления компьютер повторяет через определенные промежутки времени и в конечном итоге получает данные о широте и долготе, то есть свои координаты.
А как же древние мореплаватели определяли местоположения судна в море? Задолго до появления спутников и компьютеров морякам помогали бороздить просторы океанов различные «хитрые» приборы. Один из самых древних — астролябия — был заимствован у арабских астрономов и упрощен для работы с ним на море. С помощью дисков и стрелок этого прибора можно было измерять углы между горизонтом и солнцем или другими небесными телами. А потом эти углы переводили в значения земной широты.
Постепенно астролябию вытеснили более простые и точные приборы. Это изобретенные между Средними веками и эпохой Возрождения поперечная рейка, квадрант и секстан . Компасы с нанесенными на них делениями и получившие почти современный вид еще в 11-м веке позволяли мореплавателям вести корабль прямо по намеченному курсу.
К началу 15-го века стали пользоваться и «слепым счислением». Для этого бросали за борт лаги, привязанные к данным веревкам — линям
. На веревках через определенное расстояние были навязаны узелки. По солнечным или песочным часам отмечали время разматывания линя. Делили длину на время и получали, конечно очень неточно, скорость движения судна.
Вот такими нехитрыми приборами пользовались моряки прошлого. К слову, на нынешних судах тоже есть секстант. В коробочке, в смазке. И всегда новенький. Правда, этим девайсом редко кто пользуется. GPS системы и компьютер заменили старые проверенные навигационные приборы. С одной стороны — это нормальное явление. Прогресс. А с другой... Любимая фраза у некоторых капитанов: «А что вы будете делать, товарищи судоламатели, когда спутники выйдут из строя и вся GPS система крякнет»? Будем заново осваивать секстант. Но надеюсь что такого безобразия не произойдет. Ибо очень не хотелось бы в одно непрекрасное утро оказаться в вместо, например, .
P.S. Фото принадлежат их законным владельцам. Спасибо, добрые люди.
Искусство вождения судна кратчайшим путем от порта к порту называется навигацией. Другими словами, навигация - это способ прокладки курса судна от места отправления до места назначения, контроля курса, а при необходимости и его корректировка.
На ходовом мостике находятся приборы и устройства, необходимые для управления судном. Навигационные приборы - компасы, гироазимуты, автопрокладчики, лаги, лоты, эхолоты, секстаны и другие устройства, предназначены для определения местоположения судна и измерения отдельных элементов его движения судна.
Компасы
Компас – основной навигационный прибор, служащий для определения курса судна, для определения направлений (пеленгов) на различные объекты. На судах применяются магнитные и гироскопические компасы.
Магнитные компасы используются в качестве резервных и контрольных приборов. По назначению магнитные компасы делятся на главные и путевые.
Главный компас устанавливают на верхнем мостике в диаметральной плоскости судна, так чтобы обеспечить хороший обзор по всему горизонту (рис. 3.1). Изображение шкалы картушки при помощи оптической системы проектируется на зеркальный отражатель, установленный перед рулевым (рис. 3.2).
Рис. 3.1. Главный магнитный компас
Путевой магнитный компас устанавливают в рулевой рубке. Если главный компас имеет телескопическую передачу отсчета к посту рулевого, то путевой компас не устанавливают.
Рис. 3.2. Зеркальный отражатель магнитного компаса
На магнитную стрелку на судне действует судовое магнитное поле. Оно представляет собой совокупность двух магнитных полей: поля Земли и поля судового железа. Этим объясняется, что ось магнитной стрелки располагается не по магнитному меридиану, а в плоскости компасного меридиана. Угол между плоскостями магнитного и компасного меридианов называется девиацией.
В комплект компаса входят: котелок с картушкой, нактоуз, девиационный прибор, оптическая система и пеленгатор.
На спасательных шлюпках используется легкий, небольшой по размерам компас, не закрепленный стационарно (рис. 3.3).
Рис. 3.3. Шлюпочный магнитный компас
Гирокомпас - механический указатель направления истинного (географического) меридиана, предназначенный для определения курса объекта, а также азимута (пеленга) ориентируемого направления (рис. 3.4 - 3.5). Принцип действия гирокомпаса основан на использовании свойств гироскопа и суточного вращения Земли.
Рис. 3.4. Современный гирокомпас
Гирокомпасы имеют два преимущества перед магнитными компасами:
- они показывают направление на истинный полюс, т.е. на ту точку, через которую проходит ось вращения Земли, в то время как магнитный компас указывает направление на магнитный полюс;
- они гораздо менее чувствительны к внешним магнитным полям, например, тем полям, которые создаются ферромагнитными деталями корпуса судна.
Простейший гирокомпас состоит из гироскопа, подвешенного внутри полого шара, который плавает в жидкости; вес шара с гироскопом таков, что его центр тяжести располагается на оси шара в его нижней части, когда ось вращения гироскопа горизонтальна.
Рис. 3.5. Репитер гирокомпаса с пеленгатором, установленный на пелорусе
Гирокомпас может выдавать ошибки измерения. Например, резкое изменение курса или скорости вызывают девиацию, и она будет существовать до тех пор, пока гироскоп не отработает такое изменение. На большинстве современных судов имеются системы спутниковой навигации (типа GPS) и/или другие навигационные средства, которые передают во встроенный компьютер гирокомпаса поправки. Современные конструкции лазерных гироскопов не выдают таких ошибок, поскольку вместо механических элементов в них используется принцип разности оптического пути.
Электронный компас построен на принципе определения координат через спутниковые системы навигации (рис. 3.6). Принцип действия компаса:
- на основании сигналов со спутников определяются координаты приёмника системы спутниковой навигации;
- засекается момент времени, в который было сделано определение координат;
- выжидается некоторый интервал времени;
- повторно определяется местоположение объекта;
- на основании координат двух точек и размера временного интервала вычисляется вектор скорости движения:
- направление движения;
- скорость движения.
Рис. 3.6. Электронные компасы
Эхолот
Навигационный эхолот предназначен для надежного измерения, наглядного представления, регистрации и передачи в другие системы данных о глубине под килем судна (рис. 3.7). Эхолот должен функционировать на всех скоростях судна от 0 до 30 узлов, в условиях сильной аэрации воды, ледяной и снежной шуги, колотого и битого льда, в районах с резко меняющимся рельефом дна, скалистым, песчаным или илистым грунтом.
Рис. 3.7. Указатель эхолота
На судах устанавливаются гидроакустические эхолоты. Принцип их работы заключается в следующем: механические колебания, возбуждаемые в вибраторе-излучателе, распространяются в виде короткого ультразвукового импульса, доходят до дна и, отразившись от него, принимаются вибратором-приемником.
Эхолоты автоматически указывают глубину моря, которую определяют по скорости распространения звука в воде и промежутку времени от момента посылки импульса до момента его приема (рис. 3.8).
Рис. 3.8. Принцип работы эхолота
Эхолот должен обеспечивать измерение глубин под килем в диапазоне от 1 до 200 метров. Указатель глубин должен быть установлен в рулевой рубке, а самописец – в рулевой или штурманской рубке.
Для измерения глубин применяется также ручной лот в случаях посадки судна на мель, промера глубин у борта во время стоянки у причала и т.п.
Ручной лот (рис. 3.9) состоит из свинцовой или чугунной гири и лотлиня. Гиря выполняется в форме конуса высотой 25 - 30 см и весом от 3 до 5 кг. В нижнем широком основании гири делается выемка, которая перед замером глубины смазывается солидолом. При касании лотом морского дна частицы грунта прилипают к солидолу, и после подъема лота по ним можно судить о характере грунта.
Рис. 3.9. Ручной лот
Разбивка лотлиня производится в метрических единицах и обозначается по следующей системе: на десятках метров вплетаются флагдуки различных цветов; каждое количество метров, оканчивающееся цифрой 5, обозначаются кожаной маркой с топориками.
В каждой пятерке первый метр обозначается кожаной маркой с одним зубцом, второй - маркой с двумя зубцами, третий - с тремя зубцами и четвертый - с четырьмя.
Лаг
Примерно с конца XV в. получил известность простой измеритель скорости - ручной лаг. Он состоял из деревянной дощечки со свинцовым грузом формой в 1/1 круга, к которой прикреплялся легкий трос, имеющий узлы через равные промежутки (чаще всего 7 м). Для измерения скорости парусных судов, плававших в те времена, лаг, как приблизительно постоянная отметка на поверхности воды, бросали за борт и поворачивали песочные часы, отмеряющие определенную продолжительность времени (14 с). За время, пока сыпался песок, матрос считал количество узлов, которые проходили через его руки. Число узлов, полученных за это время, давало в пересчете скорость судна в морских милях в час. Этот способ измерения скорости объясняет возникновение выражения «узел».
Лаг - навигационный прибор для измерения скорости судна и пройденного им расстояния. На морских судах применяются механические, геомагнитные, гидроакустические, индукционные и радиодоплеровские лаги. Различают:
- относительные лаги, измеряющие скорость относительно воды; и
- абсолютные лаги, измеряющие скорость относительно дна.
Гидродинамический лаг - относительный лаг, действие которого основано на измерении разности давления, которая зависит от скорости судна. Основу гидродинамического лага составляют две трубки, выведенные под днище судна: выходное отверстие одной трубки направлено к носовой части судна; а выходное отверстие другой трубки находится заподлицо с обшивкой. Динамическое давление определяется по разности высот воды в трубках и преобразуется механизмами лага в показания скорости судна в узлах. Кроме скорости, гидродинамические лаги показывают пройденное судном расстояние в милях.
Индукционный лаг - относительный лаг, принцип действия которого основан на зависимости между относительной скоростью проводника в магнитном поле и наводимой в этом проводнике электродвижущей силой (ЭДС). Магнитное поле создается электромагнитом лага, а проводником является морская вода. Когда судно движется, магнитное поле пересекает неподвижные участки водной среды, при этом в воде индуцируется ЭДС, пропорциональная скорости перемещения судна. С электродов ЭДС поступает в специальное устройство, которое вычисляет скорость судна и пройденное расстояние.
Гидроакустический лаг - абсолютный лаг, работающий на принципе эхолота. Различают доплеровские и корреляционные гидроакустические лаги.
Геомагнитный лаг - абсолютный лаг, основанный на использовании свойств магнитного поля Земли.
Радиолаг - лаг, принцип действия которого основан на использовании законов распространения радиоволн.
На практике отсчеты лага замечают в начале каждого часа и по разности отсчетов получают плавание S в милях и скорость судна V в узлах. Лаги имеют погрешность, которая учитывается поправкой лага.
Радионавигационные приборы
Судовая радиолокационная станция (РЛС) предназначена для обнаружения надводных объектов и берега, определения места судна, обеспечения плавания в узкостях, предупреждения столкновения судов (рис. 3.10).
Рис. 3.10. Экран РЛС
В РЛС используется явление отражения радиоволн от различных объектов, расположенных на пути их распространения, таким образом, в радиолокации используется явление эха. РЛС содержит передатчик, приемник, антенно-волноводное устройство, индикатор с экраном для визуального наблюдения эхо-сигналов.
Принцип работы РЛС следующий. Передатчик станции вырабатывает мощные высокочастотные импульсы электромагнитной энергии, которые с помощью антенны посылаются в пространство узким лучом. Отраженные от какого-либо объекта (судна, высокого берега и т. п.) радиоимпульсы возвращаются в виде эхо-сигналов к антенне и поступают в приемник. По направлению узкого радиолокационного луча, который в данный момент отразился от объекта, можно определить пеленг или курсовой угол объекта. Измерив, промежуток времени между посылкой импульса и приемом отраженного сигнала, можно получить расстояние до объекта. Так как при работе РЛС антенна вращается, излучаемые импульсные колебания охватывают весь горизонт. Поэтому на экране индикатора судовой РЛС создается изображение окружающей судно обстановки. Центральная светящаяся точка на экране индикатора РЛС отмечает место судна, а идущая от этой точки светящаяся линия показывает курс судна.
Изображение различных объектов на экране радара может быть ориентировано относительно диаметральной плоскости судна (стабилизация по курсу) или относительно истинного меридиана (стабилизация по норду). Дальность «видимости» РЛС достигает несколько десятков миль и зависит от отражательной способности объектов и гидрометеорологических факторов.
Судовые РЛС позволяют за короткий промежуток времени определить курс и скорость встречного судна и избежать, таким образом, столкновения.
Рис. 3.11. Экран САРП
Все суда должны обеспечивать радиолокационную прокладку на экране РЛС, для этого их оборудуют системой автоматической радиолокационной прокладки (САРП). САРП выполняет обработку радиолокационной информации и позволяет производить (рис. 3.11):
- ручной и автоматический захват целей и их сопровождение;
- отображение на экране индикатора векторов относительного или истинного перемещения целей;
- выделение опасно сближающихся целей;
- индикацию на табло параметров движения и элементов сближения целей;
- проигрывание маневра курсом и скоростью для безопасного расхождения;
- автоматизированное решение навигационных задач;
- отображение элементов содержания навигационных карт;
- определение координат местоположения судна на основе радиолокационных измерений.
Автоматическая информационная система (АИС) является морской навигационной системой, использующей взаимный обмен между судами, а также между судном и береговой службой для передачи информации о позывном и наименовании судна для его опознавания, координатах, сведений о судне (размеры, груз, осадка и др.) и его рейсе, параметрах движения (курс, скорость и др.) с целью решения задач по предупреждению столкновений судов, контроля за соблюдением режима плавания и мониторинга судов в море.
Электронные картографические навигационные информационные системы (ЭКНИС) являются эффективным средством навигации, существенно сокращающим нагрузку на вахтенного помощника и позволяющим уделять максимум времени наблюдению за окружающей обстановкой и выработке обоснованных решений по управлению судном (рис. 3.12).
Рис. 3.12. ЭКНИС
Основные возможности и свойства ЭКНИС:
- проведение предварительной прокладки;
- проверка маршрута на безопасность;
- ведение исполнительной прокладки;
- автоматическое управление судном;
- отображение "опасной изобаты " и "опасной глубины";
- запись информации в электронный журнал с возможностью дальнейшего проигрывания;
- ручная и автоматическая (через Internet) корректура;
- подача сигнала тревоги при приближении к заданной изобате или глубине;
- дневная, ночная, утренняя и сумеречная палитры;
- электронная линейка и неподвижные метки;
- базовая, стандартная и полная нагрузка дисплея;
- обширная и дополняемая база морских объектов;
- база приливов более чем в 3000 точек Мирового Океана.
Спутниковая система навигации - это система, состоящая из наземного и космического оборудования, предназначенная для определения местоположения (географических координат), а также параметров движения (скорости и направления движения и т. д.) для наземных, водных и воздушных объектов (рис. 3.13).
Рис. 3.13. Индикатор GPS
GPS - это глобальная навигационная спутниковая система определения местоположения Global Position System. Система включает группировку низкоорбитальных навигационных спутников, наземные средства слежения и управления и самые разнообразные, служащие для определения координат. Принцип определения своего места на земной поверхности в глобальной системе позиционирования заключается в одновременном измерении расстояния до нескольких навигационных спутников (не менее трёх) - с известными параметрами их орбит на каждый момент времени, и вычислении по изменённым расстояниям своих координат.
Навигационные инструменты
Навигационный секстан - угломерный инструмент (рис. 3.14), служащий:
- в мореходной астрономии - для измерения высот светил над видимым горизонтом;
- в навигации - для измерения углов между земными предметами.
Рис. 3.14. Секстан
Слово «секстан» происходит от латинского слова «Sextans» - шестая часть круга.
Морской хронометр - высокоточные переносные часы, позволяющие получать в любой момент достаточно точное гринвичское время (рис. 3.15).
Рис. 3.15. Хронометр
Судовое время определяется по меридиану местонахождения судна и чаще всего корректируется ночью вахтенным офицером. Так, например, при изменении долготы на 15° на восток часы переводятся на 1 час вперед, а при изменении долготы на 15° в западном направлении - на 1 час назад.
Для того чтобы в машинном отделении, столовой команды, каютах, салонах, барах, камбузе иметь точное и одинаковое показание времени, устанавливают электрические часы, корректируемые от главных часов, находящихся на мостике.
Рис. 3.16. Прокладочный инструмент
К прокладочным инструментам относятся (рис. 3.16):
- измерительный циркуль - для измерения и откладывания расстояний на карте;
- параллельная линейка - для проведения на карте прямых, а также параллельных заданному направлению линий;
- навигационный транспортир - для построения и измерения углов, курсов и пеленгов на карте.
Кроме этого, на мостике находятся журналы, папки с документацией, навигационные карты, обязательные справочники и пособия и др. (рис. 3.17).
Рис. 3.17. Документация
Навигация в переводе с латинского означает «мореплавание, судоходство». Это составная часть комплекса морских наук, которая выделилась из них в процессе развития мореходства. Сюда входит лоция - делающая акцент на навигационных пособиях, морская астрономия - которая изучает методы определения координат судна по небесным светилам; и средства судовождения, с помощью которых ведется счисление пути и определение местоположения судна.
Сама история людей неразрывно связана с морем и мореплаванием. Останки людей, которым более 30 тысяч лет, найдены в Северной и Южной Америке, многие из этих древних людей переплыли океан. Как это им удалось? Тур Хейердал во время своих океанских экспедиций на прообразах старинных судов доказал, что это возможно. Первые корабли нам известны по древнеегипетским записям, - это достаточно совершенные суда, на которых египтяне осуществляли оживленную торговлю по Нилу и по морю. Этим записям более 4-х тысяч лет. С этой древней поры уже и возникла надобность в навигации.
Какие вопросы стояли перед древними мореходами? Да такие же, как и в наше время. Это определение своего местоположения и направление пути. Вначале оживленные морские торговые пути шли вдоль берегов, и навигацию осуществляли по береговым ориентирам. Если же предстояло плыть через океан, то перед глазами древних путешественников был лишь один ориентир - звезды. Направления сторон света определяли по движению солнца. А долго наблюдая ночью за звездами, можно выделить среди них и неподвижные объекты. Это Полярная звезда в Северном полушарии и звезды в созвездии Южный крест в Южном. Скорее всего, ориентируясь на эти звезды, древние люди осваивали все новые пространства, заселяли материки и острова. Также древние заметили, что хоть звезды и движутся, но расстояния между ними не изменяются. Перед глазами людей стояла ошеломляющая картина движущейся небесной сферы. Это сейчас мы знаем, что двигается Земля и мы вместе с ней. Но эти наблюдения и положили начало астрономии и астронавигации.
Древний финикийский корабль. Изображение на саркофаге
Первые навигационные карты
Чтобы успешно ориентироваться в пространстве, люди стремились построить модель этого пространства, чтобы знать, где они находились и куда все-таки плыть. Некоторые народности пользовались устной традицией, когда в форме рассказов или песнопений передавалась информация о морских путях. Иногда пользовались и узелковой письменностью. Но даже схематичное изображение, план местности был более нагляден. Так стали появляться карты. У полинезийцев, преодолевших огромный Тихий океан, это были плетеные циновки с обозначением островов и рифов. Египтяне рисовали на тростнике. Однако эти карты, несмотря на большую точность в описаниях конкретных местностей и их особенностей, не давали ответа на главный вопрос - в каком именно месте в данный момент находится мореплаватель? Сколько времени ему идти до выбранного порта? Неподвижная точка отсчета уже была - это звезды. Требовалось придумать и решить, как обозначить свое местоположение на карте. Но первоначальные карты были к сожалению неточными, ведь круглую поверхность Земли трудно нанести на плоскость карты без искажений. Тем более что по древним представлениям земля была плоской, что вносило ещё большую неточность. Однако торговля развивалась, особенно сильно в регионе Средиземного моря. Постепенно были накоплены огромные знания по мореходству, астрономии и другим наукам, в дальнейшем они были собраны в античной Греции. Развитие эти науки получили позднее, во времена римской империи. Греки, пользуясь своими наблюдениями и собранной информацией от предшественников, нанесли на карты очертания известных земель. Для обозначения местоположения этих земель и других объектов на карту нанесли сетку координат. Изобретение этой широко нам известной сетки на картах из параллелей и меридианов тоже принадлежит древним грекам. Понятие широты и долготы для определения своего местоположения возникло опять-таки в Греции в результате постоянных наблюдений за положением и высотой Солнца днем и высотой звезд над горизонтом ночью. Мерой измерения было выбрано изменение положения Солнца. Наблюдая за светилами, ещё халдейцы разделили круг на 360 частей, где одной частью - градусом - было перемещение Солнца на небе на величину его диска. Градус разделили на 60 угловых минут, так как этот народ имел шестидесятиричную систему счисления. Эти знания были усвоены и развиты греками. Постепенно в науку вошли такие понятия, как горизонт, эклиптика, небесный экватор. Без этих астрономических понятий невозможно определение точных координат.
Современная трёхмерная карта звездного неба
Уже в третьем веке до н.э. греческий ученый Эратосфен определил не только то, что Земля круглая, но и очень точно вычислил длину окружности и радиус земной сферы. Он применил в своих картах равнопромежуточную цилиндрическую проекцию, что давало большую точность на картах, показывающих небольшие площади земной поверхности. Другой греческий ученый - Гиппарх - в третьем веке до н.э.покрыл всю землю сеткой меридианов и параллелей. Теперь стало понятно, в какой области карты надо находить свои координаты. Немного позднее римский географ Маринус Тирский составляет точные морские карты. Для некоторых областей он очень точно вычисляет долготу и широту и наносит их на сетку из параллелей и меридианов. Его сведениями в дальнейшем пользовался знаменитый ученый Птолемей в своих трудах. Маринус, как и Эратосфен, даже пытался изобразить полную модель Земли - глобус. Его вычисления и карты были настолько точны, что их приняли за основу в 15 веке португальцы.
Труды же более позднего ученого - Птолемея - дали огромный толчок науке географии и мореходства. Птолемей нарисовал карту мира в конической проекции, с параллелями и меридианами, он обозначил сетку координат, исчисляемых в градусах, где широты измерялись от экватора, а долготы — от самой западной точки известного тогда мира. Он опросил огромное количество купцом и моряков и довольно точно описал побережья и страны, даже те, которые не видел. Он описал огромное количество новых мест и дал их координаты. Помимо точных сведений, он записывал на карты и выдумки людей, поэтому в его картах можно найти, например, земли населенные народом песьеголовцев и прочие чудеса. В дальнейшем, после Птолемея, ничего нового в картографии не было придумано, а после крушения римской империи наступили и вовсе темные времена.
Карта Птолемея в современной обработке. На ней достаточно точно указаны известные в то время грекам земли
Древние навигационные инструменты
Самым первым навигационным инструментом были глаза древнего мореплавателя. Но с развитием мореплавания этого стало недостаточно. Для точного определения угла светил над горизонтом потребовались специальные инструменты. Так появился сначала гномон, который представлял из себя высокий столб, по соотношению длин столба и тени от него определяли время и высоту Солнца над горизонтом. Гномон в виде доски с шестом на нем впервые был использован греческим торговцем и мореплавателем Пифеем для определения широты ещё в 4-ом веке до н.э. Купец нарушил существоваший тогда запрет и вышел за Геркулесовы столбы в открытый Атлантический океан, где провел свои наблюдения. Несмотря на примитивный прибор и волнение, путешественник снял показания с точностью в несколько угловых минут. Позднее для астронавигационных наблюдений использовали квадрант. Квадрант представлял из себя обычную доску, вытесанную из камня или дерева. На ее поверхности были нанесены вертикальная и горизонтальная линии и объединяющая их дуга в 90°, разделенная на градусы и их части. В центре дуги помещали линейку, которая могла перемещаться.
Квадрант
Более совершенным инструментом стала астролябия, которой пользовались начиная со второго века до н.э. вплоть до 18-го. Астролябия была по сути моделью небесной сферы с ее важными точками, кругами, полюсами и осью мира, меридианом, горизонтом, небесным экватором и эклиптикой. Выполнять наблюдения таким прибором было непросто. Наблюдая Солнце, Луну или известные звезды, древний астронавигатор приводил круги сложного инструмента в правильное положение, после чего по градуированным на кругах шкалам вычислял долготу и широту по наблюдаемому светилу. Самый известный дощедший до нас механизм - древнегреческий прибор из 32 шестерен "Антикитера", поднятый со дна моря. По сохранившимся надписям на нем можно сделать вывод, что это астронавигационный прибор. Механизм мог вычислять конфигурации движения Солнца, Луны, Марса, Юпитера, Сатурна, лунные и солнечные затмения. Предположительное время изготовления - период между 100 - 150 годами до н.э.
Древний астронавигационный прибор
Ещё один прибор, без которого не могут обходится современные навигаторы - компас - тоже был изобретен в незапамятные времена. Изобретатели компаса - китайцы, если верить записям в их книгах, начали использовать магнитный компас не только для религиозных нужд, но и для мореходства примерно за 300 лет до нашей эры. Однако до нас дошли копии компаса более позднего периода. Он представлял собой подобие намагниченной ложки, черенком показывающий на юг. Китайцы каждой стороне света сопоставляли свой цвет. Например, юг ассоциировался с красным цветом - современные компасы следуют этой традиции.
Китайский компас
Лоция
Начиная с плаваний египтян и финикийцев, были накоплены огромные массивы информации о береговой линии, портах убежищ, якорных стоянках. Эти знания легли в основу карт и в дальнейшем использовались даже европейцами в средние века. Также древние мореплаватели, выходя в океан, столкнулись с таким явлением, как приливы и отливы. В дальнейшем знания были систематизированы, и уже в древнегреческой лоции, к примеру, писали: «Вся индийская страна имеет очень много рек и очень высокий прилив и отлив, которые в новолуние и полнолуние усиливаются в течение трех дней, а в промежуточные фазы бывают слабее».
Определенную сложность в исторические времена представляло собой точное измерение времени и расстояния. Для измерения времени пользовались водяными или песочными часами, а расстояния измеряли на глаз. В Древней Греции для помощи капитанам, была также принята система маяков. Очень известен Александрийский маяк высотой 120 метров. Многие скульптуры, поставленные на берегу, тоже служили береговыми ориентирами для кораблей. Известная статуя Колосса Родосского высотой 36 метров была видна за многие мили. А вход в большие порты по ночам освещался светом - большими кострами.
Первые школы мореплавателей
С развитием торгового мореплавания, с увеличением количества морских путешествий, возникла необходимость передачи знаний. Упоминаний именно о морских школах глубокой древности не сохранилось, скорее всего знания передавались устно и в тесном кругу. Одной из древних известных школ была школа мореплавания в Полинезии. На острове Райатея, было обнаружено место, откуда исходила экспансия полинезийцев на остальные острова Тихого Океана, и место передачи знаний о морском деле и навигации - это и были первые мореходные школы. Представители Центра яхтенной подготовки АМС, побывали в этом сакральном месте на островах . В 2012 году мы планируем совершить туда вторую экспедицию.
"Тапу тапу марае" на острове Райатея. Датируется 1-м тысячелетием до н.э. Это сохранившиеся остатки одной из первых школ океанского плавания. Фото Владимира Ватрунина.
Первые учебники для мореплавателей были написаны, наверное, наравне с изобретением письменности. Один из известных нам астрономических учебников мореплавания был составлен Фалесом Милетским ещё за 600 лет до н.э. В Греции преподавание астрономии, в том числе и астрономии для мореплавания, велось в высших учебных заведениях того времени. Известные же нам классические школы мореплавания были созданы гораздо позднее, в средние века.
Данная статья содержит перечень основных штурманских инструментов и их описание.
Штурманские приборы и инструменты
Чтобы обеспечить безопасность плавания, контроль за движением судна и его местонахождением относительно берега, в штурманской практике применяют различные технические средства судовождения (ТСС), навигационные приборы и инструменты:
- для определения направления - компасы;
- для определения скорости движения судна и пройденного расстояния - лаги;
- для определения глубины под килем - ручные лоты и эхолоты;
- угломерные инструменты (секстаны), часы и секундомеры, оптические дальномеры, бинокли, наклономеры и др.;
- традиционный инструментарий для работе на карте - штурманский транспортир, параллельная линейка, циркуль- измеритель, циркуль, протрактор, грузики для карт;
- гидрометеорологические приборы - барометр, барограф, анемометр, круг СМО, термометр наружный, кренометр.
Компасы.
Это навигационные приборы, предназначенные для определения курса судна и направлений на береговые ориентиры и плавучие объекты, находящиеся в поле зрения судоводителя. На маломерных судах могут встретиться различные типы компасов и их модификации. Наиболее распространенным курсоуказателем является магнитный компас.
Измерители скорости – лаги
Лаги различных типов прочно заняли место наряду с другими современными ТСС. Из всех типов лагов (гидродинамического, индукционного, доплеровского гидроакустического, корреляционного, радиодоплеровского) наиболее приемлемыми для катеров и яхт являются гидроакустический и индукционный лаги, для судов на воздушной подушки наиболее приемлем радиодоплеровский лаг.
Измерители глубины.
Лотом
называется прибор, с помощью которого измеряют глубины под днищем судна. Навигационные лоты различных типов предназначены для измерения глубин до 500 м Лоты бывают ручные и гидроакустические эхолоты. На маломерных судах используются преимущественно ручные лоты,
Ручной лот
предназначен для измерения глубин до 50 м. Лот состоит из гири и лотлиня.
Эхолот. Хотя редко, но и на маломерных судах применяются современные измерители глубины – эхолоты
Принцип действия эхолота основан на измерении времени, за которое звуковой импульс достигает дна и после его отражения возвращается обратно. После необходимых преобразований (практически это происходит мгновенно) на специальном табло или дисплее высвечивается значение глубины и рельеф дна.
Измерители расстояния.
Бинокль. Бинокли используются судоводителями для наблюдения за окружающей обстановкой (другими судами, береговыми ориентирами, знаками навигационной обстановки и т.д.)
Секстан
– угломерный инструмент отражательного типа для измерения высот небесных светил и углов (вертикальных и горизонтальных) на земной поверхности. Для измерения вертикального угла секстан берется в правую руку и в вертикальном положении направляется трубой на основание предмета (маяк, судно, заводская труба, знак и т.д.). Затем стопором передвигается алидада так, чтобы подвести дважды отраженное изображение верхней части предмета к его основанию. После чего снимается в градусах отсчет по индексу алидады в соответствии с делением лимба, а минуты и их десятые доли – с отсчетного барабана. Снятый отсчет исправляют поправкой индекса секстана и полученный результат будет соответствовать величине вертикального угла на данный предмет.
Измерители времени.
Морской хронометр.
Этот прибор служит для определения достаточно точного гринвичского времени, его часто называют хранителем всемирного времени. Высокая точность хода и его равномерность обеспечиваются специальными регуляторами. Большой циферблат разбит на 12 часовых делений и имеет часовую и минутную стрелку. На одном из двух малых циферблатов стрелка отсчитывает секунды, на другом – время, прошедшее с момента последнего завода хронометра. Хранится хронометр в специальном ящике на кардановом подвесе, который обеспечивает состояние покоя часовому механизму во время качки. Заводится хронометр ежесуточно в одно и тоже время (как правило, в 8 часов).
Поправка хронометра (разность между Тгр и показанием хронометра) определяется по радиосигналам точного времени и каждые сутки фиксируется в специальном журнале. Рис.15 Хронометр
Палубные часы.
Устанавливаются по гринвичскому времени, и при отсутствии на судне хронометра, выполняют его функцию. Механизм часов имеет повышенную точность.
Циферблат разбит на 12 делений и имеет часовую, минутную и центральную секундную стрелки.
Судовые или морские часы.
Назначение судовых часов – показывать судовое время, по которому организуется служба и повседневная жизнь на судне. Их устанавливают в каютах и служебных помещениях. Часы имеют круглый циферблат, разбитый на 12 или 24 часовых деления, часовую, минутную и центральную секундную стрелки. Как правило завод часов недельный.
Секундомер
- служит для точного измерения небольших промежутков времени. На маломерных судах ручные или карманные часы, имеющие большую центральную секундную стрелку, вполне могут заменить секундомер. Эти же часы можно использовать для определения пройденного расстояния, моментов взятия пеленгов, времени изменения курса и других моментов, которые необходимо наносить на карту.
Прокладочные ин струменты
При работе на карте судоводитель-любитель должен использовать прокладочный инструмент, в набор которого входят параллельная линейка, транспортир, циркуль-измеритель, грузики для карт.
Параллельная линейка (рис.16) служит для проведения на карте прямых и параллельных заданному направлению линий. Линейка состоит из двух половин, соединенных двумя равными тягами на шарнирах. Срезы линеек не должны иметь зазубрин, изгибов, заусениц, а тяги должны легко вращаться вокруг осей, но без свободного хода. При работе с линейкой необходимо следить за параллельностью передвижения, чтобы не сбить заданного направления линии. Линии наносят остроотточенным карандашом без заметного усилия.
Транспортир навигационный
(рис. 16) служит для построения и измерения на карте углов, курсов и пеленгов. Он представляет собой полукруг с линейкой имеется несколько разновидностей). Центр полукруга отмечен вырезом на линейке. Верхний срез дуги градуирован по верхнему ряду от точки 1 до точки 2 влево - от 0 до 90°, от точки 2 до точки 3 влево - от 270 до 360°, по нижнему ряду от точки 1 до точки 2 влево - от 180 до 270° и от точки 2 до точки 3 - от 90° до 180°. Верхний ряд цифр используется для прокладки направлений северной половины картушки компаса, а нижний - южной.
Следует помнить, что углы увеличиваются от О до 360° от нордовой части меридиана вправо.
Циркуль-измеритель
служит для измерения ‘расстояний и нанесения их на карту. Работать с циркулем удобнее одной рукой. Большие расстояния откладывают по частям. Разводить ножки циркуля более чем на 90° не рекомендуется. Расстояние измеряют на боковой рамке карты в той же широте, где происходит плавание или находится измеряемое расстояние. Отложив расстояние, следует проверить его повторным обратным измерением.
Грузики
для карт предназначены для удержания карты на рабочем месте. На маломерных судах, где нет рубки, грузики можно заменять кнопками, которыми карта крепится на плоском деревянном переносном планшете.
Гидрометеорологические приборы.
Атмосферное давление (давление воздуха, барометрическое давление) определяется весом столба воздуха, который давит на единицу площади горизонтальной поверхности. Прибор для измерения атмосферного давления
носит название барометра. Шкала прибора проградуирована в миллиметрах ртутного столба, на ней встроен термометр.